Browse

You are looking at 91 - 100 of 12,513 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All
Cuiyi Fei
and
Rachel H. White

Abstract

High-amplitude quasi-stationary Rossby waves (QSWs) have been connected to extreme weather events. By identifying particularly high-amplitude QSW events (QWEs) over Europe and North America, we study their characteristics in ERA5 data and in ensemble simulations from the CESM2 general circulation model. The CESM2 reproduces the overall statistics of QWEs, with ERA5 results within the ensemble spread. The ensemble spread is large, indicating a strong influence of internal variability. Composites of meridional wind anomalies for QWEs show a phase preference in both ERA5 and CESM2, resembling the climatological wave pattern. This is partly due to the definition of QSWs; with the day-of-year climatological meridional wind removed when identifying QSWs, the phase preference remains, albeit with a weaker signal. Significant tropical Pacific precipitation anomalies are seen 5–15 days before observed QWEs; the location of these anomalies is broadly reproduced in CESM2, but the magnitude is substantially underestimated and the time scale is biased. We find a narrowed and strengthened jet stream over the Pacific at the early stage of European QWEs, which may create enhanced waveguidability; this signal is generally reproduced in the models. Overall, the CESM2 can simulate QWEs; differences between the model ensemble mean and the reanalysis could result from model bias or internal variability, although biases are not reduced in CESM2 simulations forced with observed SSTs.

Restricted access
Moeka Yamaji
and
Hiroshi G. Takahashi

Abstract

This study aimed to reveal the seasonal climatic variations in the microphysical properties of precipitation over the Asian monsoon region. We used the Dual-Frequency Precipitation Radar satellite product aboard the Global Precipitation Measurement Mission Core Observatory for 8 years from 2014 to 2021 to statistically analyze the mass-weighted mean diameter (Dm ) and frequency of heavy ice precipitation (graupel and hail). The results showed statistically significant seasonal changes. The microphysical characteristics of large Dm and frequent heavy ice precipitation were observed over the Indian subcontinent and Indochina Peninsula in the premonsoon season and over the western Himalayan region in the mature-monsoon season, which can be related to the intense and deeply developed precipitation systems. The relationship between precipitation rate and Dm was also examined. The results indicated that changes in Dm were not caused only by changes in precipitation rate but were probably induced by changes in precipitation characteristics. In terms of the relationship between the microphysical properties, heavy ice precipitation particles in the upper atmosphere above the melting layer were observed more frequently as Dm near the surface increased. We also studied lower-atmospheric instability by investigating the vertical gradients of the dry and moist static energies. The results indicated that instability properties were different; dry and wet instabilities were dominant in the premonsoon and monsoon seasons, respectively, consistent with the results of the precipitation characteristics.

Significance Statement

The purpose of this study was to reveal seasonal variations in precipitation microphysical characteristics, such as precipitation particle size and the existence of graupel and hail in the upper atmosphere, by climatological analysis over the Asian monsoon region. In previous studies, microphysical characteristics have mainly been addressed using ground-based observations. However, more sampling is needed to expand our understanding of climatological perspectives; therefore, we used recently available satellite observations. As a result, we found that precipitation particles at the surface were larger, and more graupel and hail existed in clouds in the premonsoon season when less precipitation was observed, compared to the mature-monsoon season when precipitation amount and frequency were abundant.

Open access
Mark Pinsky
,
Eshkol Eytan
,
Ehud Gavze
, and
Alexander Khain

Abstract

A developing cumulus cloud (Cu) was modeled, and dynamic, thermodynamic, and microphysical properties of an ascending head bubble reproducing the upper part of a developing Cu were investigated. The data for analysis are taken from 10-m-resolution LES of trade wind Cu under BOMEX conditions. The detection of a rising bubble is carried out using wavelet filtering of the velocity fields and microphysical fields, while a low-frequency signal of the filtering is associated with the convective-scale structure of cloud. We substantiate and discuss the representation of the bubble as a vortex ring, and estimate the parameters of this vortex ring. The simplest Hill’s vortex was chosen as a model of a vortex ring inside cloud. Analytical approximations of the radial profiles of the vertical velocity and of conservative quantities (such as total water mixing ratio and liquid water potential temperature inside and outside the bubble) are obtained. The spatial structure of these quantities is investigated using analytical expressions. Analytical models for spatial distributions of liquid water content (LWC) and adiabatic fraction (AF) are also designed and analyzed. The results demonstrate the existence of a cloud core with high values of LWC and AF up to the height of 1800 m. The horizontally averaged value of the adiabatic fraction, calculated analytically using the Hill’s vortex concept, is evaluated as 0.39, which is the typical AF value in the upper parts of such Cu. The vertical profiles of different important quantities characterizing cloud structure are presented. The analysis performed in this study allows us to conclude that a rising vortex ring plays the dominating role in formation of the thermodynamic and microphysical structure of developing Cu.

Significance Statement

1) Dynamic and thermodynamic fields of a developing cumulus cloud simulated by high-resolution LES with spectral bin microphysics are separated into convective and turbulent components by means of the wavelet technique. 2) The analysis of convective component of the cloud revealed the existence of a vortex ring at the developing stage of the cloud and evaluate its parameters. 3) The analysis performed in this study allows us to conclude that a rising vortex ring plays the important role in formation of the thermodynamic and microphysical structure of developing Cu. 4) The study provides a novel insight into the cloud–environment interaction. 5) The approximating equations describing the vortex ring can be usefully applied for developing new schemes of convective parameterization.

Restricted access
Jin-De Huang
,
Ching-Shu Hung
,
Chien-Ming Wu
, and
Hiroaki Miura

Abstract

Convective variability is used to diagnose different pathways toward convective self-aggregation (CSA) in radiative–convective equilibrium simulations with two cloud-resolving models, SCALE and VVM. The results show that convection undergoes gradual growth in SCALE and fast transition in VVM, which is associated with different mechanisms between the two models. In SCALE, strong radiative cooling associated with a dry environment drives the circulation from the dry region, and the dry environment results from strong subsidence and insufficient surface flux supply. The circulation driven by the radiative cooling then pushes convection aggregating, which is the dry-radiation pathway. In VVM, CSA develops due to the rapid strengthening of circulation driven by convective systems in the moist region, which is the convection-upscaling pathway. The different pathways of CSA development can be attributed to the upscale process of convective structures identified by the cloud size spectrum. The upscaling of large-size convective systems can enhance circulation from the moist region in VVM. In SCALE, the infrequent appearance of large convective systems is insufficient to generate circulation, as compensating subsidence can occur within the moist region even in the absence of convective systems. This study shows that the convective variabilities between models can lead to different pathways of CSA, and mechanism-denial experiments also support our analyses.

Restricted access
Deepak Waman
,
Akash Deshmukh
,
Arti Jadav
,
Sachin Patade
,
Martanda Gautam
,
Vaughan Phillips
,
Aaron Bansemer
, and
Jonas Jakobsson

Abstract

The role of time-dependent freezing of ice nucleating particles (INPs) is evaluated with the “Aerosol–Cloud” (AC) model in 1) deep convection observed over Oklahoma during the Midlatitude Continental Convective Cloud Experiment (MC3E), 2) orographic clouds observed over North California during the Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX), and 3) supercooled, stratiform clouds over the United Kingdom, observed during the Aerosol Properties, Processes And Influences on the Earth’s climate (APPRAISE) campaign. AC uses the dynamical core of the WRF Model and has hybrid bin–bulk microphysics and a 3D mesoscale domain. AC is validated against coincident aircraft, ground-based, and satellite observations for all three cases. Filtered concentrations of ice (>0.1–0.2 mm) agree with those observed at all sampled levels. AC predicts the INP activity of various types of aerosol particles with an empirical parameterization (EP), which follows a singular approach (no time dependence). Here, the EP is modified to represent time-dependent INP activity by a purely empirical approach, using our published laboratory observations of time-dependent INP activity. In all simulated clouds, the inclusion of time dependence increases the predicted INP activity of mineral dust particles by 0.5–1 order of magnitude. However, there is little impact on the cloud glaciation because the total ice is mostly (80%–90%) from secondary ice production (SIP) at levels warmer than about −36°C. The Hallett–Mossop process and fragmentation in ice–ice collisions together initiate about 70% of the total ice, whereas fragmentation during both raindrop freezing and sublimation contributes <10%. Overall, total ice concentrations and SIP are unaffected by time-dependent INP activity. In the simulated APPRAISE case, the main causes of persistence of long-lived clouds and precipitation are predicted to be SIP in weak embedded convection and reactivation following recirculation of dust particles in supercooled layer cloud.

Open access
Michael Heisel
and
Marcelo Chamecki

Abstract

A new mixed scaling parameter Z = z/(Lh)1/2 is proposed for similarity in the stable atmospheric surface layer, where z is the height, L is the Obukhov length, and h is the boundary layer depth. In comparison with the parameter ζ = z/L from Monin–Obukhov similarity theory (MOST), the new parameter Z leads to improved mean profile similarity for wind speed and air temperature in large-eddy simulations. It also yields the same linear similarity relation for CASES-99 field measurements, including in the strongly stable (but still turbulent) regime where large deviations from MOST are observed. Results further suggest that similarity for turbulent energy dissipation rate depends on both Z and ζ. The proposed mixed scaling of Z and relevance of h can be explained by physical arguments related to the limit of z-less stratification that is reached asymptotically above the surface layer. The presented evidence and fitted similarity relations are promising, but the results and arguments are limited to a small sample of idealized stationary stable boundary layers. Corroboration is needed from independent datasets and analyses, including for complex and transient conditions not tested here.

Restricted access
Daniel D. B. Koll
,
Nadir Jeevanjee
, and
Nicholas J. Lutsko

Abstract

Climate models and observations robustly agree that Earth’s clear-sky longwave feedback has a value of about −2 W m−2 K−1, suggesting that this feedback can be estimated from first principles. In this study, we derive an analytic model for Earth’s clear-sky longwave feedback. Our approach uses a novel spectral decomposition that splits the feedback into four components: a surface Planck feedback and three atmospheric feedbacks from CO2, H2O, and the H2O continuum. We obtain analytic expressions for each of these terms, and the model can also be framed in terms of Simpson’s law and deviations therefrom. We validate the model by comparing it against line-by-line radiative transfer calculations across a wide range of climates. Additionally, the model qualitatively matches the spatial feedback maps of a comprehensive climate model. For present-day Earth, our analysis shows that the clear-sky longwave feedback is dominated by the surface in the global mean and in the dry subtropics; meanwhile, atmospheric feedbacks from CO2 and H2O become important in the inner tropics. Together, these results show that a spectral view of Earth’s clear-sky longwave feedback elucidates not only its global-mean magnitude, but also its spatial pattern and its state dependence across past and future climates.

Significance Statement

The climate feedback determines how much our planet warms due to changes in radiative forcing. For more than 50 years scientists have been predicting this feedback using complex numerical models. Except for cloud effects the numerical models largely agree, lending confidence to global warming predictions, but nobody has yet derived the feedback from simpler considerations. We show that Earth’s clear-sky longwave feedback can be estimated using only pen and paper. Our results confirm that numerical climate models get the right number for the right reasons, and allow us to explain regional and state variations of Earth’s climate feedback. These variations are difficult to understand solely from numerical models but are crucial for past and future climates.

Open access
Kwan Tsaan Lai
and
Michael L. Waite

Abstract

The atmospheric kinetic energy spectrum and energy cascade are investigated in idealized simulations of radiative–convective equilibrium (RCE). WRF is employed to perform cloud-resolving simulations of an idealized radiative–convective equilibrium with and without aggregation with Δx = 4 km. The horizontal kinetic energy (HKE) spectrum for the aggregated simulation in the upper troposphere is steeper than the nonaggregated case and closer to −5/3. The HKE spectra for the nonaggregated simulation in the upper troposphere and the lower stratosphere are much shallower than the −5/3 spectrum. In the upper troposphere, the divergent kinetic energy has a similar magnitude to the rotational kinetic energy in both the nonaggregated simulation and aggregated simulation. Energy is mainly gained from the buoyancy flux and mainly lost from the vertical energy flux for scales larger than 20 km. Downscale energy transfer is found in the upper troposphere. Numerical dissipation is the main source of energy loss at small scales. In the lower stratosphere, the divergent kinetic energy dominates the kinetic energy spectrum in both simulations. Energy is mainly gained from the vertical energy flux and is balanced by the loss from the buoyancy flux term, transfer term, and dissipation. An Eliassen–Palm flux analysis suggests that wave–mean-flow interaction may be responsible for the upscale energy transfer found in the lower stratosphere. The magnitudes of our kinetic energy spectra are similar to spectra calculated from aircraft data. Rotation is found to promote aggregation and steepen the energy spectrum.

Restricted access
Chibueze N. Oguejiofor
,
Charlotte E. Wainwright
,
Johna E. Rudzin
, and
David H. Richter

Abstract

Predicting the rapid intensification (>15.0 m s−1 increase in 10 m wind speed over 24 h or less) of tropical cyclones (TC) remains a challenge in the broader context of numerical weather prediction largely due to their multiscale dynamics. Ocean observations show that the size and magnitude of sea surface temperature (SST) anomalies associated with cold wakes and ocean eddies play important roles in TC dynamics. In this study, a combination of spectral and structure function analyses is utilized to generate realistic realizations of multiscale anomalies characteristic of the SST conditions in which Hurricane Irma (2017) underwent rapid intensification (RI). We investigate the impact of the length scale of these SST anomalies and the role of translation speed on the variance in RI onset timing. Length-scale-induced convective asymmetries, in addition to the mean magnitude of SST anomalies beneath the storm eye, are shown to modulate the variance in RI onset timing. The size of the associated SST length scales relative to the storm size is critical to the magnitude of variance in RI onset timing, as smaller length scales are shown to lack the spatial extent required to induce preferential convective asymmetries. Storm translation speed is also shown to influence the variance in RI onset timing for larger-length-scale ensembles by altering the exposure time of the eye to these SST anomalies. We find that an interplay between SST-induced convective asymmetries, the magnitude of SST anomalies underneath the eye/eyewall, and storm translation speed play crucial roles in modulating the variance in RI onset timing.

Significance Statement

The characteristics of sea surface temperature (SST) anomalies in the tropical cyclone near-environment are inherently multiscale in nature as a result of interactions between various dynamical processes in the ocean. Assuming a uniform SST beneath storms in numerical simulations limits the predictability of how air–sea interaction affects the physics of rapid intensification (RI). In this study, the influence of realistic multiscale SST anomalies on RI onset timing is investigated. Our results suggest that the length scale of SST anomalies (in addition to its magnitude) modulate the distribution of convection, creating asymmetries around the RMW that can influence the predictability of RI onset. This effect is further modulated by storm translation speed, with the most prominent impact seen in slow-moving storms.

Restricted access
Jiwang Ma
and
X. San Liang

Abstract

The typical blockings over the Pacific, Atlantic, and Ural Mountain regions are investigated for an understanding of their dynamical interactions in a unified treatment with their respective basic flows and high-frequency processes, respectively. Thanks to the localized nature of the new methodology as used in this study, for the first time we identify a dipolar structure (for each of the three regions) in the map of the interscale energy transfer from the basic flow to the composite blocking, with a positive center upstream and a negative center downstream. This indicates the crucial role of the instability of the basic flow in the maintenance of blockings, which has been overlooked due to the bulk nature of the spatially integrated energetics (by summing the transfer over the whole blocking, the two centers essentially cancel out, leaving an insignificant bulk transfer). For the interaction between the blocking and the high-frequency storms, the well-known critical role of the upscale forcing in blocking development is confirmed. But, unexpectedly, except for that over the Atlantic where the forcing exists throughout, over the other two regions the forcing is found to occur mainly downstream. This is quite different from what the classical theory, e.g., the famous eddy strain mechanism of Shutts, would predict.

Open access