Browse

You are looking at 91 - 100 of 11,627 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Shaobo Zhang
,
Zuhao Zhou
,
Peiyi Peng
, and
Chongyu Xu

Abstract

Climate projections obtained by running global climate models (GCMs) are subject to multisource uncertainties. The existing framework based on analysis of variance (ANOVA) for decomposing such uncertainties is unable to include the interaction effect between GCM and internal climate variability, which ranks only second to the main effect of GCM in significance. In this study, a three-way ANOVA framework is presented, and all main effects and interaction effects are investigated. The results show that, although the overall uncertainty (O) is mainly contributed by main effects, interaction effects are considerable. Specifically, in the twenty-first century, the global mean (calculated at the grid-cell level and then averaged, and likewise below) relative contributions of all main effects are 54% for precipitation and 82% for temperature; those of all interaction effects are, respectively, 46% and 18%. As the three-way ANOVA cannot investigate the uncertainty components resulting from uncertainty sources, it is improved by deducing the relationship between uncertainty components resulting from uncertainty sources and those resulting from the main effects and interaction effects. By the improved three-way ANOVA, O is decomposed into uncertainty components resulting from the emission scenario (S), GCM (M), and internal climate variability (V). The results reveal that O is mainly contributed by M in the twenty-first century for precipitation, and by M before the 2060s whereas by S thereafter for temperature. The robustness of the V characterization is explored by investigating the variation of V on the number of included ensemble members. The extent of the underestimation of the V contribution is roughly an average of 4% for precipitation and 1% for temperature.

Open access
Yong-Fu Lin
and
Jin-Yi Yu

Abstract

This study explores the key differences between single-year (SY) and multiyear (MY) El Niño properties and examines their relative importance in causing the diverse evolution of El Niño. Using a CESM1 simulation, observation/reanalysis data, and pacemaker coupled model experiments, the study suggests that the Indian Ocean plays a crucial role in distinguishing between the two types of El Niño evolution through subtropical ENSO dynamics. These dynamics can produce MY El Niño events if the climatological northeasterly trade winds are weakened or even reversed over the subtropical Pacific when El Niño peaks. However, El Niño and the positive Indian Ocean dipole (IOD) it typically induces both strengthen the climatological northeasterly trades, preventing the subtropical Pacific dynamics from producing MY events. MY events can occur if the El Niño fails to induce a positive IOD, which is more likely when the El Niño is weak or of the central Pacific type. Additionally, this study finds that such a weak correlation between El Niño and the IOD occurs during decades when the Atlantic multidecadal oscillation (AMO) is in its positive phase. Statistical analyses and pacemaker coupled model experiments confirm that the positive AMO phase increases the likelihood of these conditions, resulting in a higher frequency of MY El Niño events.

Restricted access
Andrew Hoell
,
Rachel Robinson
,
Laurie Agel
,
Mathew Barlow
,
Melissa Breeden
,
Jon Eischeid
,
Amy McNally
,
Kimberly Slinski
, and
Xiao-Wei Quan

Abstract

We diagnose physical factors related to frequent compound drought and heat extremes over a Middle East and Southwest Asia (MESA; 30°–40°N, 35°–65°E) region in a recent (1999–2022) compared to a prior (1951–98) period. The recent compound extremes were related to conflict, disease transmission, and water shortages in this already semiarid region. Observed estimates and four transient climate model ensembles are used to identify the effect of El Niño–Southern Oscillation (ENSO) and atmospheric forcing by greenhouse gases and aerosols on these compound extremes in autumn (September–November), winter (December–February), spring (March–May), and summer (June–August) that may lead to practical forecast skill for future compound events. Observations and climate models indicate that MESA compound drought and heat in the autumn, winter, and spring wet seasons for the recent period were related to the La Niña phase of ENSO and an attendant northward shift of the storm track that hinders precipitation-bearing storms from moving through MESA. A comparison of different conditions in the model simulations is used to isolate the effects of La Niña and the atmospheric forcing by greenhouse gases and aerosols on compound MESA drought and heat. A comparison of recent and prior periods in the climate models, which isolates the effects of the atmospheric forcing, indicates that greenhouse gases and aerosols are related to the increases in MESA heat frequency in all seasons. A comparison of La Niña to ENSO neutral and El Niño in the recent period of the climate models indicates that La Niña is related to increases in MESA drought frequency in the wet seasons.

Significance Statement

Compound drought and heat pose serious threats to the Middle East and Southwest Asia (MESA) where political and socioeconomic challenges leave its people vulnerable to climate extremes. In this region, frequent seasonal compound drought and heat in a recent (1999–2022) compared to a prior (1951–98) period were related to conflict and water shortages. Physical factors related to these compound extremes in the recent period over MESA were identified, potentially rendering future occurrences predictable. La Niña and atmospheric forcing by greenhouse gases and aerosols contributed to the compound extremes, with the former related to anomalously low precipitation in the September–November, December–February, and March–May wet seasons and the latter related to anomalous high temperatures in all seasons, including June–August.

Restricted access
Ruyu Gan
,
Gang Huang
, and
Kaiming Hu

Abstract

El Niño is known to affect Arctic temperature. However, the robustness of the observed relationship between El Niño and Arctic temperature remains debated. Here we reexamine the impacts of El Niño on the Arctic temperature in boreal winter [December–February (DJF)] using reanalysis datasets and atmospheric model experiments. This study shows that extreme El Niño events are accompanied by significant boreal winter cooling over northeastern Canada and Greenland (NECG), while moderate eastern Pacific (MEP) El Niño events are accompanied by significant boreal winter warming in this region. For central Pacific (CP) El Niño events, a cold signal appears in NECG, but with no statistical significance. During extreme El Niño winters, a positive Pacific–North America (PNA)-like pattern is seen in the Pacific, and anomalously negative 200-hPa geopotential height (Z200) strengthening occurs over NECG, which is a response to anomalous strong wave activity originating in the tropical Pacific. El Niño–induced circulation anomalies can further induce NECG cooling via cold temperature advection and decreased downward longwave radiation. In contrast, for the MEP El Niño, the subtropical jet extends zonally from the North Pacific to the North Atlantic, which is accompanied by increased baroclinicity anomalies and favors the propagation of synoptic eddies into the Atlantic, leading to a negative North Atlantic Oscillation (NAO)-like pattern. This in turn could further enhance the positive Z200 anomalies over NECG, resulting in anomalous warming in NECG through warm temperature advection and enhanced downward longwave radiation. A series of atmospheric model experiments simulates the observed circulation changes and associated warming over NECG.

Significance Statement

This work investigates the different impacts of the three El Niño types on regional Arctic wintertime temperature anomalies based on observations and model experiments. The impacts of El Niño events on northeastern Canada and Greenland temperatures during boreal winter show distinct differences between extreme El Niño and moderate EP El Niño events. These distinct differences can be attributed to the different atmospheric circulation patterns induced by different SST patterns, which can lead to warm (cold) temperature advection and enhanced (decreased) downward longwave radiation. These results highlight the different impacts of extreme and moderate EP El Niños on Arctic temperatures and provide an improved understanding of the impact of El Niños on the Arctic climate.

Restricted access
Shanshan Pang
,
Xidong Wang
, and
Jérôme Vialard

Abstract

Previous studies have hypothesized that climatologically thick salinity-stratified barrier layers (BLs) in the north Indian Ocean (NIO) influence the upper ocean heat budget, sea surface temperature (SST), and monsoons. Here, we investigate how state-of-the-art Coupled Model Intercomparison Project phase 6 (CMIP6) climate models simulate the NIO barrier layer thickness (BLT). CMIP6 models generally reproduce the BLT seasonal cycle and spatial distribution, but with shallow November–February (NDJF) biases in regions with thick observed BLT: the eastern equatorial Indian Ocean (EEIO), Bay of Bengal (BoB), and southeastern Arabian Sea (SEAS). We show that the intensity of the CMIP6 equatorial easterly wind bias controls the EEIO shallow isothermal layer depth (ILD) and BLT biases. It also controls the BoB shallow BLT bias, both through the propagation of the EEIO shallow ILD bias into the NIO coastal waveguide and because it is linked to the BoB dry and cold bias through the Bjerknes feedback, hence also controlling the mixed layer depth (MLD) deep bias there. Finally, the SEAS shallow BLT bias is due to a too-deep MLD, in response to subdued monsoonal currents around India, which do not bring enough BoB low-salinity water. The BL insulating effect mentioned in literature does not seem to dominate in CMIP6. Rather, the CMIP6 salinity-related deep MLD biases diminish the BoB cooling rate by winter upward surface heat fluxes, reducing cold SST biases. This suggests that salinity effects alleviate the easterly equatorial wind, cold, and dry BoB biases that develop through the positive Bjerknes feedback loop in CMIP6.

Restricted access
Yu Yang
,
Dayong Wen
,
Shu Gui
,
Ruowen Yang
, and
Jie Cao

Abstract

The thermal and mechanical effects of the regional orography have long been recognized as the two most important factors driving the East Asian summer monsoon (EASM). The Southeast Asian low-latitude highlands (SEALLH) are a warmer and wetter highland region adjacent to the southeastern margin of the Tibetan Plateau. However, the importance of the individual contributions of the thermal and mechanical effects of the SEALLH to the EASM is still unclear. Results of numerical experiments show that the thermal effect of the SEALLH contribute to the precipitation and upper-tropospheric circulation of the EASM by roughly the same magnitude as the mechanical effect of the SEALLH, when its original height is reduced by 50%. The thermal effect of the SEALLH influences the EASM by exciting an East Asia–Pacific-like teleconnection, whereas the mechanical effect of the SEALLH impacts the EASM by exciting an equivalent barotropic Bay of Bengal–East Asia–Pacific-like teleconnection. This study could provide a new perspective for a better understanding of the EASM.

Significance Statement

Recent studies have shown that the mountains adjacent to the Tibetan Plateau have significant effects on the Asian summer monsoon, although these mountains are much lower in elevation and smaller in extent than the Tibetan Plateau. The Southeast Asian low-latitude highlands (SEALLH), located on the southeastern margin of the Tibetan Plateau, influence the East Asian summer monsoon (EASM) via both thermal and mechanical effects. However, the individual thermal and mechanical contributions to the EASM have not yet been clarified. Numerical experiments designed specifically for the SEALLH, which is warmer and wetter than the Tibetan Plateau, show that the thermal effect of the SEALLH on precipitation and the upper-tropospheric circulation over the EASM region is roughly equivalent to the mechanical effect of the SEALLH when its original height was reduced by 50%, but via different physical processes. The thermal effect of the SEALLH induces southerly wind anomalies between the SEALLH and the western North Pacific, influencing the EASM by exciting an East Asia–Pacific-like wave train. The mechanical effect of the SEALLH influences the EASM by exciting an equivalent barotropic Bay of Bengal–East Asia–Pacific-like wave train.

Restricted access
Yu-Chiao Liang
,
Young-Oh Kwon
,
Claude Frankignoul
,
Guillaume Gastineau
,
Karen L. Smith
,
Lorenzo M. Polvani
,
Lantao Sun
,
Yannick Peings
,
Clara Deser
,
Ruonan Zhang
, and
James Screen

Abstract

This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account.

Significance Statement

This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.

Open access
Shunsuke Aoki
and
Shoichi Shige

Abstract

To understand how coastal precipitation is controlled by the low-level background wind, we performed comprehensive analysis using the 17-yr observations of the TRMM PR over the entire region of the tropics. We classified the data according to the direction (onshore or offshore) and strength of the cross-shore wind. Under weak winds, the contribution of the diurnal cycle to total precipitation is large, indicating that thermally forced precipitation with a symmetrical propagation pattern with opposite sign across the coastline is dominant. As the background wind strengthens, the contribution of the diurnal cycle reduces owing to the predominance of mechanical forcing; however, the effect of the diurnal cycle remains nonnegligible with an asymmetrical propagation pattern across the coastline. Using the linear theory of the sea–land-breeze circulation, we demonstrated that the difference in propagation is attributable to gravity waves excited by the land–ocean surface heating difference. Under weak winds, symmetrical diurnal phase propagation is caused by the two symmetrical modes of landward and seaward gravity waves. Under stronger background winds, in addition to the Doppler-shifted landward and seaward modes, waves propagating toward the upwind side in the flow-relative frame but with slow group velocity are advected to the downwind near the coastline, forming another mode that moves slowly in the downwind direction. The superposition of the three modes leads to asymmetrical propagation of precipitation with varying phase speed depending on the distance from the coastline.

Open access
Yitian Qian
,
Pang-Chi Hsu
,
Hiroyuki Murakami
,
Gan Zhang
,
Huijun Wang
, and
Mingkeng Duan

Abstract

The intraseasonal variations in anticyclonic Rossby wave breaking (AWB) events, which are characterized by synoptic-scale irreversible meridional overturning of potential vorticity over the North Pacific, and their modulations on tropical cyclone (TC) activity over the western North Pacific (WNP), were investigated in this study. Spectral analysis of the AWB frequency shows significant variability within a period of 7–40 days, closely linked to the subseasonal variability of the jet stream intensity. When the jet stream weakens at its exit region over the North Pacific, the AWB occurs along with an equatorward Rossby wave flux. This AWB is preceded by an intensified Rossby wave train across Eurasia 12 days earlier. Simultaneously, a high potential vorticity intrusion is advected in the upper troposphere from the North Pacific toward the WNP, and suppressed TC activities are observed over the WNP open ocean where decreased moisture and temperature, subsidence, and increased vertical wind shear prevail. In contrast, anomalously enhanced convection, positive relative vorticity, and ascending motion are found in the southwestern quadrant of the AWB, facilitating enhanced TC activities over the South China Sea (SCS). Further analysis indicates that the impact of the AWB on TC activities over the WNP is robust and independent of the tropical intraseasonal convection over the tropical Indian Ocean and SCS, even though it accompanies the increased AWB frequency.

Restricted access
Pengcheng Zhang
,
Shang-Ping Xie
,
Yu Kosaka
, and
Nicholas J. Lutsko

Abstract

The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.

Restricted access