Browse
Abstract
The instability of a surface-trapped jet over rough bottom topography is examined using a linearized quasigeostrophic model. The jet is laterally sheared and thus susceptible to both barotropic and baroclinic instability. The relative magnitude of the two depends on the jet width and on the spectral characteristics and amplitude of the bathymetry. The most unstable eddies in the upper layer are typically smaller over bathymetry than with a flat bottom. Topography also alters momentum flux convergence in the upper layer and causes the perturbations to resemble eddies in a 1.5-layer flow. But as long as the jet is wider than the deformation radius, baroclinic instability is present, yielding deep eddies that are phase-locked to those at the surface. In addition, topography facilitates scattering of energy at depth to other scales. So, instability over rough topography could be an efficient, and largely overlooked, means of transferring mesoscale energy to the dissipative scales.
Significance Statement
This study investigates the effects of bottom roughness on large-scale ocean currents and their associated eddies. Roughness affects the eddy size and speed and how they exchange energy with the mean flow. Roughness also facilitates energy transfer to smaller scales where it can be dissipated. Thus, instability over rough topography could be an important part of the oceanic energy balance.
Abstract
The instability of a surface-trapped jet over rough bottom topography is examined using a linearized quasigeostrophic model. The jet is laterally sheared and thus susceptible to both barotropic and baroclinic instability. The relative magnitude of the two depends on the jet width and on the spectral characteristics and amplitude of the bathymetry. The most unstable eddies in the upper layer are typically smaller over bathymetry than with a flat bottom. Topography also alters momentum flux convergence in the upper layer and causes the perturbations to resemble eddies in a 1.5-layer flow. But as long as the jet is wider than the deformation radius, baroclinic instability is present, yielding deep eddies that are phase-locked to those at the surface. In addition, topography facilitates scattering of energy at depth to other scales. So, instability over rough topography could be an efficient, and largely overlooked, means of transferring mesoscale energy to the dissipative scales.
Significance Statement
This study investigates the effects of bottom roughness on large-scale ocean currents and their associated eddies. Roughness affects the eddy size and speed and how they exchange energy with the mean flow. Roughness also facilitates energy transfer to smaller scales where it can be dissipated. Thus, instability over rough topography could be an important part of the oceanic energy balance.
Abstract
Tracer variance budgets can be used to estimate bulk mixing in a control volume. For example, simple, analytical, bulk formulations of salt mixing, defined here as the destruction of salinity variance, can be found for estuaries with a riverine source of freshwater and a two-layer exchange flow at the mouth using salinity as a representative tracer. For a steady case, the bulk salt mixing M can be calculated as
Abstract
Tracer variance budgets can be used to estimate bulk mixing in a control volume. For example, simple, analytical, bulk formulations of salt mixing, defined here as the destruction of salinity variance, can be found for estuaries with a riverine source of freshwater and a two-layer exchange flow at the mouth using salinity as a representative tracer. For a steady case, the bulk salt mixing M can be calculated as
Abstract
When a wave breaks, it produces bubbles whose sizes depend on the breaking severity. This paper attempts to estimate wave breaking dissipation through a passive acoustic method. Initially, regular waves were forced to break in a flume. The breaking energy loss (severity) and the underwater acoustic noise were recorded. Two kinds of thresholds, in terms of sound wave amplitude and the ratio of sound wave height to period, respectively, were used together to identify the sound waves generated by newly formed bubbles. The frequencies of these sound waves are connected with the bubble sizes. Thus, a relationship between the mean bubble radius and the breaking severity was established and found to be linear. This laboratory relationship was then applied to Lake George data to study the breaking dissipation rate across the spectrum. An average acoustic spectral density threshold was proposed to identify breaking events from acoustic records in the field. The sound waves associated with bubble formation were selected by means of the same two kinds of threshold as used in the laboratory. Thus, the mean bubble radius of each breaking event was obtained and translated into the breaking severity. The values of experimental dissipation were compared with previous relevant results obtained through different methods as well as the wave breaking dissipation source terms ST6 (WAVEWATCH-III model) and are in good agreement with both of them.
Abstract
When a wave breaks, it produces bubbles whose sizes depend on the breaking severity. This paper attempts to estimate wave breaking dissipation through a passive acoustic method. Initially, regular waves were forced to break in a flume. The breaking energy loss (severity) and the underwater acoustic noise were recorded. Two kinds of thresholds, in terms of sound wave amplitude and the ratio of sound wave height to period, respectively, were used together to identify the sound waves generated by newly formed bubbles. The frequencies of these sound waves are connected with the bubble sizes. Thus, a relationship between the mean bubble radius and the breaking severity was established and found to be linear. This laboratory relationship was then applied to Lake George data to study the breaking dissipation rate across the spectrum. An average acoustic spectral density threshold was proposed to identify breaking events from acoustic records in the field. The sound waves associated with bubble formation were selected by means of the same two kinds of threshold as used in the laboratory. Thus, the mean bubble radius of each breaking event was obtained and translated into the breaking severity. The values of experimental dissipation were compared with previous relevant results obtained through different methods as well as the wave breaking dissipation source terms ST6 (WAVEWATCH-III model) and are in good agreement with both of them.
Abstract
Prominent interannual-to-decadal variations were observed in both heat content and mesoscale eddy activity in the southeast Indian Ocean (SEIO) during 1993–2020. The 2000–01 and 2008–14 periods stand out with increased 0–700-m ocean heat content (OHC) by ∼4.0 × 1021 J and enhanced surface eddy kinetic energy (EKE) by 12.5% over 85°–115°E, 35°–12°S. This study provides insights into the key dynamical processes conducive to these variations by analyzing observational datasets and high-resolution regional ocean model simulations. The strengthening of the Indonesian Throughflow (ITF) and anomalous cyclonic winds over the SEIO region during the two periods are demonstrated to be the most influential. While the ITF caused prevailing warming of the upper SEIO, the cyclonic winds cooled the South Equatorial Current and attenuated the warming in the subtropical SEIO by evoking upwelling Rossby waves. The EKE increase exerts significant influence on OHC only in the Leeuwin Current system. Dynamical instabilities of the Leeuwin Current give rise to high EKEs and westward eddy heat transport in climatology. As the Leeuwin Current was enhanced by both the ITF and local winds, the elevated EKEs drove anomalous heat convergence on its offshore flank. This process considerably contributes to the OHC increase in the subtropical SEIO and erases the wind-driven cooling during the two warm periods. This work highlights the vital role of eddies in regional heat redistribution, with implications for understanding time-varying ocean heat storage in a changing climate.
Abstract
Prominent interannual-to-decadal variations were observed in both heat content and mesoscale eddy activity in the southeast Indian Ocean (SEIO) during 1993–2020. The 2000–01 and 2008–14 periods stand out with increased 0–700-m ocean heat content (OHC) by ∼4.0 × 1021 J and enhanced surface eddy kinetic energy (EKE) by 12.5% over 85°–115°E, 35°–12°S. This study provides insights into the key dynamical processes conducive to these variations by analyzing observational datasets and high-resolution regional ocean model simulations. The strengthening of the Indonesian Throughflow (ITF) and anomalous cyclonic winds over the SEIO region during the two periods are demonstrated to be the most influential. While the ITF caused prevailing warming of the upper SEIO, the cyclonic winds cooled the South Equatorial Current and attenuated the warming in the subtropical SEIO by evoking upwelling Rossby waves. The EKE increase exerts significant influence on OHC only in the Leeuwin Current system. Dynamical instabilities of the Leeuwin Current give rise to high EKEs and westward eddy heat transport in climatology. As the Leeuwin Current was enhanced by both the ITF and local winds, the elevated EKEs drove anomalous heat convergence on its offshore flank. This process considerably contributes to the OHC increase in the subtropical SEIO and erases the wind-driven cooling during the two warm periods. This work highlights the vital role of eddies in regional heat redistribution, with implications for understanding time-varying ocean heat storage in a changing climate.
Abstract
Various physical mechanisms of ocean upwelling usually occur near or along coastal regions worldwide. Five upwelling zones of unequal intensity are found around the Taiwan Strait, and the Taiwan Bank (TB) upwelling zone has the most prominent characteristics of low temperature. In this study, satellite images, shipboard ADCPs (acoustic Doppler current profilers), and CTDs (conductivity–temperature–depth measures) were analyzed to investigate the processes of cold water upwelling around the TB shoaling zone. In addition, the MITgcm numerical model and the flexible cubic spline technique were also employed, allowing us to better understand those processes. The model results suggested that a combination of Ekman transport and the centrifugal force, driven by the geostrophic South China Sea Warm Current (SCSWC), constitutes a physical mechanism to contribute the vigorous upwelling in the TB shoal zone. The upwelling is largely driven by Ekman transport. However, the centrifugal force may explain why the upwelling with a crescent-shaped distribution of low temperatures along the convex topography of the southeastern edge of the TB shoaling zone is more prominent than expected, as it tends toward the so-called gradient wind balance. Sudden relaxation of the friction force occurred because of the very sharp shelf break (20–60 m) and steep slope topography; a discontinuous velocity zone around the shelf break could also lead to vigorous cold water upwelling.
Significance Statement
Extensive data concerning the Taiwan Bank (TB) shoaling zone have been collected in the past decade in an attempt to improve understanding of the process of cold water upwelling in the area. Because the Kuroshio invades the South China Sea from the east, and the South China Sea Warm Current flows northeastward around the southeastern edge of the TB, water circulation in and around the sandbar is very complicated. Thus, we expanded our model range from small to large scale to avoid the open boundary settings of small-scale model (including the temperature and salinity fields, wind stress, and the model driving forces), which were not easy to set up. Thus, we used a large-scale, high-resolution circulation model to study a small-scale ocean region. Physical processes of this upwelling can finally be verified in the small-scale region. To compensate for the insufficient resolution of the large-scale numerical model, our strategy was to utilize the flexible cubic spline technique to resolve the curvature of the markedly meandering currents. In light of scale analysis, the results showed that in addition to the critical contribution of Ekman transport to the upwelling, the effects of centrifugal forces on upwelling in the TB shoal zone need to be considered.
Abstract
Various physical mechanisms of ocean upwelling usually occur near or along coastal regions worldwide. Five upwelling zones of unequal intensity are found around the Taiwan Strait, and the Taiwan Bank (TB) upwelling zone has the most prominent characteristics of low temperature. In this study, satellite images, shipboard ADCPs (acoustic Doppler current profilers), and CTDs (conductivity–temperature–depth measures) were analyzed to investigate the processes of cold water upwelling around the TB shoaling zone. In addition, the MITgcm numerical model and the flexible cubic spline technique were also employed, allowing us to better understand those processes. The model results suggested that a combination of Ekman transport and the centrifugal force, driven by the geostrophic South China Sea Warm Current (SCSWC), constitutes a physical mechanism to contribute the vigorous upwelling in the TB shoal zone. The upwelling is largely driven by Ekman transport. However, the centrifugal force may explain why the upwelling with a crescent-shaped distribution of low temperatures along the convex topography of the southeastern edge of the TB shoaling zone is more prominent than expected, as it tends toward the so-called gradient wind balance. Sudden relaxation of the friction force occurred because of the very sharp shelf break (20–60 m) and steep slope topography; a discontinuous velocity zone around the shelf break could also lead to vigorous cold water upwelling.
Significance Statement
Extensive data concerning the Taiwan Bank (TB) shoaling zone have been collected in the past decade in an attempt to improve understanding of the process of cold water upwelling in the area. Because the Kuroshio invades the South China Sea from the east, and the South China Sea Warm Current flows northeastward around the southeastern edge of the TB, water circulation in and around the sandbar is very complicated. Thus, we expanded our model range from small to large scale to avoid the open boundary settings of small-scale model (including the temperature and salinity fields, wind stress, and the model driving forces), which were not easy to set up. Thus, we used a large-scale, high-resolution circulation model to study a small-scale ocean region. Physical processes of this upwelling can finally be verified in the small-scale region. To compensate for the insufficient resolution of the large-scale numerical model, our strategy was to utilize the flexible cubic spline technique to resolve the curvature of the markedly meandering currents. In light of scale analysis, the results showed that in addition to the critical contribution of Ekman transport to the upwelling, the effects of centrifugal forces on upwelling in the TB shoal zone need to be considered.
Abstract
Interactions between near-inertial waves and the balanced eddy field modulate the intensity and location of turbulent dissipation and mixing. Two EM-APEX profiling floats measured near-inertial waves generated by Typhoons Mindulle, 22 August 2016, and Lionrock, 30 August 2016, near the radius of maximum velocity of a mesoscale anticyclonic eddy in the Kuroshio–Oyashio confluence east of Japan. High-vertical-wavenumber near-inertial waves exhibit energy fluxes inward toward eddy center, consistent with wave refraction/reflection at the eddy perimeter. Near-inertial kinetic energy tendencies are nearly two orders of magnitude greater than observed turbulent dissipation rates ε, indicating propagation/advection of wave packets in and out of the measurement windows. Between 50 and 150 m, ε ∼
Abstract
Interactions between near-inertial waves and the balanced eddy field modulate the intensity and location of turbulent dissipation and mixing. Two EM-APEX profiling floats measured near-inertial waves generated by Typhoons Mindulle, 22 August 2016, and Lionrock, 30 August 2016, near the radius of maximum velocity of a mesoscale anticyclonic eddy in the Kuroshio–Oyashio confluence east of Japan. High-vertical-wavenumber near-inertial waves exhibit energy fluxes inward toward eddy center, consistent with wave refraction/reflection at the eddy perimeter. Near-inertial kinetic energy tendencies are nearly two orders of magnitude greater than observed turbulent dissipation rates ε, indicating propagation/advection of wave packets in and out of the measurement windows. Between 50 and 150 m, ε ∼
Abstract
The winter–summer transition in the southern South China Sea (SCS) western boundary current (WBC) is studied. Two categories have been identified. In case 1, the southern SCS WBC transition in the lower layer (below the thermocline) lags that in the upper layer (above the thermocline). In case 2, there is no transition lag at full depth. In both categories, the geostrophic balance dominates the transition. In case 1, the upper layer geostrophic balance is dominated by the sea surface height pressure gradient (SSHPG) and Coriolis forcing during southern SCS WBC transition. Therefore, there is no transition lag with depth in the upper layer. Below the thermocline layer, the competition between the SSHPG and the density pressure gradient (DPG) determines the transition. During the transition, the amplitudes of the SSHPG and DPG are basically equivalent. The SSHPG needs time to develop sufficiently larger than the DPG. Therefore, the transition in the deeper layer significantly lags that in the shallower layer. The reversal of the SSHPG is mainly attributed to the change in the basin-scale wind stress curl over the southern SCS. The change in the DPG is mainly associated with the cooling of the water along the western continental slope, which is induced by upwelling. In case 2, there is no cooling along the western continental slope, and then the amplitude of the DPG is always far smaller than that of the SSHPG. Responding to the change in the SSHPG, the southern SCS WBC transition behaves consistently at full depth.
Significance Statement
We have a comprehensive understanding of the South China Sea (SCS) circulation patterns in winter and summer. However, their seasonal transitions remain unclear, and a better understanding of them is potentially helpful for improving ocean circulation modeling and prediction. This paper focuses on the winter–summer transition in the SCS western boundary current (WBC). Above the thermocline (∼100 m), the transition behaves consistently in the vertical direction and is controlled by the conversion of the sea surface height–induced pressure gradient. Below the thermocline, the transition in the deeper layer of the WBC significantly lags that in the shallower layer of the WBC, which is associated with the competition between the SSH-induced pressure gradient and the density-induced pressure gradient at the sea surface.
Abstract
The winter–summer transition in the southern South China Sea (SCS) western boundary current (WBC) is studied. Two categories have been identified. In case 1, the southern SCS WBC transition in the lower layer (below the thermocline) lags that in the upper layer (above the thermocline). In case 2, there is no transition lag at full depth. In both categories, the geostrophic balance dominates the transition. In case 1, the upper layer geostrophic balance is dominated by the sea surface height pressure gradient (SSHPG) and Coriolis forcing during southern SCS WBC transition. Therefore, there is no transition lag with depth in the upper layer. Below the thermocline layer, the competition between the SSHPG and the density pressure gradient (DPG) determines the transition. During the transition, the amplitudes of the SSHPG and DPG are basically equivalent. The SSHPG needs time to develop sufficiently larger than the DPG. Therefore, the transition in the deeper layer significantly lags that in the shallower layer. The reversal of the SSHPG is mainly attributed to the change in the basin-scale wind stress curl over the southern SCS. The change in the DPG is mainly associated with the cooling of the water along the western continental slope, which is induced by upwelling. In case 2, there is no cooling along the western continental slope, and then the amplitude of the DPG is always far smaller than that of the SSHPG. Responding to the change in the SSHPG, the southern SCS WBC transition behaves consistently at full depth.
Significance Statement
We have a comprehensive understanding of the South China Sea (SCS) circulation patterns in winter and summer. However, their seasonal transitions remain unclear, and a better understanding of them is potentially helpful for improving ocean circulation modeling and prediction. This paper focuses on the winter–summer transition in the SCS western boundary current (WBC). Above the thermocline (∼100 m), the transition behaves consistently in the vertical direction and is controlled by the conversion of the sea surface height–induced pressure gradient. Below the thermocline, the transition in the deeper layer of the WBC significantly lags that in the shallower layer of the WBC, which is associated with the competition between the SSH-induced pressure gradient and the density-induced pressure gradient at the sea surface.
Abstract
The equatorial Pacific zonal circulation is composed of westward surface currents, the eastward equatorial undercurrent (EUC) along the thermocline, and upwelling in the eastern cold tongue. Part of this upwelling arises from water flowing along isotherms sloping up to the east, but it also includes water mass transformation and consequent diabatic (cross-isothermal) flow (w ci) that is a key element of surface-to-thermocline communication. In this study we investigate the mean seasonal cycle and subseasonal variability of cross-isothermal flow in the cold tongue using heat budget output from a high-resolution forced ocean model. Diabatic upwelling is present throughout the year with surface-layer solar-penetration-driven diabatic upwelling strongest in boreal spring and vertical mixing in the thermocline dominating during the rest of the year. The former constitutes warming of the surface layer by solar radiation rather than exchange of thermal energy between water parcels. The mixing-driven regime allows heat to be transferred to the core of the EUC by warming parcels at depth. On subseasonal time scales the passage of tropical instability waves (TIWs) enhances diabatic upwelling on and north of the equator. On the equator the TIWs enhance vertical shear and induce vertical-mixing-driven diabatic upwelling, while off the equator TIWs enhance the sub-5-daily eddy heat flux which enhances diabatic upwelling. Comparing the magnitudes of TIW, seasonal, and interannual w ci variability, we conclude that each time scale is associated with sizeable variance. Variability across all of these time scales needs to be taken into account when modeling or diagnosing the effects of mixing on equatorial upwelling.
Abstract
The equatorial Pacific zonal circulation is composed of westward surface currents, the eastward equatorial undercurrent (EUC) along the thermocline, and upwelling in the eastern cold tongue. Part of this upwelling arises from water flowing along isotherms sloping up to the east, but it also includes water mass transformation and consequent diabatic (cross-isothermal) flow (w ci) that is a key element of surface-to-thermocline communication. In this study we investigate the mean seasonal cycle and subseasonal variability of cross-isothermal flow in the cold tongue using heat budget output from a high-resolution forced ocean model. Diabatic upwelling is present throughout the year with surface-layer solar-penetration-driven diabatic upwelling strongest in boreal spring and vertical mixing in the thermocline dominating during the rest of the year. The former constitutes warming of the surface layer by solar radiation rather than exchange of thermal energy between water parcels. The mixing-driven regime allows heat to be transferred to the core of the EUC by warming parcels at depth. On subseasonal time scales the passage of tropical instability waves (TIWs) enhances diabatic upwelling on and north of the equator. On the equator the TIWs enhance vertical shear and induce vertical-mixing-driven diabatic upwelling, while off the equator TIWs enhance the sub-5-daily eddy heat flux which enhances diabatic upwelling. Comparing the magnitudes of TIW, seasonal, and interannual w ci variability, we conclude that each time scale is associated with sizeable variance. Variability across all of these time scales needs to be taken into account when modeling or diagnosing the effects of mixing on equatorial upwelling.
Abstract
The sea surface expressions of Mediterranean Water eddies, known as “meddies,” are observed in satellite data, and their main characteristics are measured. Satellite altimeter observations of surface expressions are detected over the meddies observed in situ using the MEDTRANS meddy dataset (1950–2013). In this study 209 observed meddy cores in the North Atlantic Ocean, selected over the period of the 22 years of sea surface height measurements with satellite altimetry (1993–2013), were analyzed. Results show relatively good agreement between the theoretical estimates of the meddy surface signals as reported by Bashmachnikov and Carton and the measured surface expressions. It was found that, on average, the theoretical results underestimate the measured sea surface elevations of the meddy surface expressions by a factor of 2. Although the variability of the measured expressions is reasonably well described by the combination of meddy core and the ocean background parameters of the theoretical expression, we cannot define a single individual parameter of the meddy core, which chiefly shapes the magnitude of the meddy surface signal. Interestingly, the overall distribution of characteristics of meddy surface expressions in the Atlantic shows that the sea level anomalies formed by meddies intensify westward, growing both in magnitude and radius. This opposes the expected theoretical decrease of meddy surface signals due to a known progressive decay of the meddy cores with distance from their generation region at the Iberian continental slope. This observed tendency is attributed to meddy interaction with the upper-ocean currents and other eddies (in particular in the region of the North Atlantic Current and Azores Current) that are not considered by the theory.
Abstract
The sea surface expressions of Mediterranean Water eddies, known as “meddies,” are observed in satellite data, and their main characteristics are measured. Satellite altimeter observations of surface expressions are detected over the meddies observed in situ using the MEDTRANS meddy dataset (1950–2013). In this study 209 observed meddy cores in the North Atlantic Ocean, selected over the period of the 22 years of sea surface height measurements with satellite altimetry (1993–2013), were analyzed. Results show relatively good agreement between the theoretical estimates of the meddy surface signals as reported by Bashmachnikov and Carton and the measured surface expressions. It was found that, on average, the theoretical results underestimate the measured sea surface elevations of the meddy surface expressions by a factor of 2. Although the variability of the measured expressions is reasonably well described by the combination of meddy core and the ocean background parameters of the theoretical expression, we cannot define a single individual parameter of the meddy core, which chiefly shapes the magnitude of the meddy surface signal. Interestingly, the overall distribution of characteristics of meddy surface expressions in the Atlantic shows that the sea level anomalies formed by meddies intensify westward, growing both in magnitude and radius. This opposes the expected theoretical decrease of meddy surface signals due to a known progressive decay of the meddy cores with distance from their generation region at the Iberian continental slope. This observed tendency is attributed to meddy interaction with the upper-ocean currents and other eddies (in particular in the region of the North Atlantic Current and Azores Current) that are not considered by the theory.
Abstract
Changes in dynamic manometric sea level ζm
represent mass-related sea level changes associated with ocean circulation and climate. We use twin model experiments to quantify magnitudes and spatiotemporal scales of ζm
variability caused by barometric pressure pa
loading at long periods (
Abstract
Changes in dynamic manometric sea level ζm
represent mass-related sea level changes associated with ocean circulation and climate. We use twin model experiments to quantify magnitudes and spatiotemporal scales of ζm
variability caused by barometric pressure pa
loading at long periods (