Browse

You are looking at 101 - 110 of 118 items for :

  • Artificial Intelligence for the Earth Systems x
  • Refine by Access: All Content x
Clear All
Grant W. Petty

Abstract

A simple yet flexible and robust algorithm is described for fully partitioning an arbitrary dataset into compact, nonoverlapping groups or classes, sorted by size, based entirely on a pairwise similarity matrix and a user-specified similarity threshold. Unlike many clustering algorithms, there is no assumption that natural clusters exist in the dataset, although clusters, when present, may be preferentially assigned to one or more classes. The method also does not require data objects to be compared within any coordinate system but rather permits the user to define pairwise similarity using almost any conceivable criterion. The method therefore lends itself to certain geoscientific applications for which conventional clustering methods are unsuited, including two nontrivial and distinctly different datasets presented as examples. In addition to identifying large classes containing numerous similar dataset members, it is also well suited for isolating rare or anomalous members of a dataset. The method is inductive in that prototypes identified in representative subset of a larger dataset can be used to classify the remainder.

Free access
Bowen Li
,
Sukanta Basu
, and
Simon J. Watson

Abstract

As wind and solar power play increasingly important roles in the European energy system, unfavorable weather conditions, such as “Dunkelflaute” (extended calm and cloudy periods), will pose ever greater challenges to transmission system operators. Thus, accurate identification and characterization of such events from open data streams (e.g., reanalysis, numerical weather prediction, and climate projection) are going to be crucial. In this study, we propose a two-step, unsupervised deep learning framework [wind and solar network (WISRnet)] to automatically encode spatial patterns of wind speed and insolation, and subsequently, identify Dunkelflaute periods from the encoded patterns. Specifically, a deep convolutional neural network (CNN)–based autoencoder (AE) is first employed for feature extraction from the spatial patterns. These two-dimensional CNN-AE patterns encapsulate both amplitude and spatial information in a parsimonious way. In the second step of the WISRnet framework, a variant of the well-known k-means algorithm is used to divide the CNN-AE patterns in region-dependent meteorological clusters. For the validation of the WISRnet framework, aggregated wind and solar power production data from Belgium are used. Using a simple criterion from published literature, all the Dunkelflaute periods are directly identified from this 6-year-long dataset. Next, each of these periods is associated with a WISRnet-derived cluster. Interestingly, we find that the majority of these Dunkelflaute periods are part of only 5 clusters (out of 25). We show that in lieu of proprietary power production data, the WISRnet framework can identify Dunkelflaute periods from public-domain meteorological data. To further demonstrate the prowess of this framework, it is deployed to identify and characterize Dunkelflaute events in Denmark, Sweden, and the United Kingdom.

Free access
Martin Rempel
,
Peter Schaumann
,
Reinhold Hess
,
Volker Schmidt
, and
Ulrich Blahak

Abstract

A wealth of forecasting models is available for operational weather forecasting. Their strengths often depend on the lead time considered, which generates the need for a seamless combination of different forecast methods. The combined and continuous products are made in order to retain or even enhance the forecast quality of the individual forecasts and to extend the lead time to potentially hazardous weather events. In this study, we further improve an artificial neural network–based combination model that was recently proposed in a previous paper. This model combines two initial precipitation ensemble forecasts and produces exceedance probabilities for a set of thresholds for hourly precipitation amounts. Both initial forecasts perform differently well for different lead times, whereas the combined forecast is calibrated and outperforms both initial forecasts with respect to various validation scores and for all considered lead times (from +1 to +6 h). Moreover, the robustness of the combination model is tested by applying it to a new dataset and by evaluating the spatial and temporal consistency of its forecasts. The changes proposed further improve the forecast quality and make it more useful for practical applications. Temporal consistency of the combined product is evaluated using a flip-flop index. It is shown that the combination provides a higher persistence with decreasing lead times compared to both input systems.

Free access
Antonios Mamalakis
,
Elizabeth A. Barnes
, and
Imme Ebert-Uphoff

Abstract

Convolutional neural networks (CNNs) have recently attracted great attention in geoscience because of their ability to capture nonlinear system behavior and extract predictive spatiotemporal patterns. Given their black-box nature, however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications. Our goal is to raise awareness of the theoretical limitations of these methods and to gain insight into the relative strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attribution benchmark, in which the ground truth of explanation of the network is known a priori, to help objectively assess their performance. Second, we apply XAI to a climate-related prediction setting, namely, to explain a CNN that is trained to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several important issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, and ignorance to zero input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity and will help toward a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and deep learning for prediction problems.

Free access
Charles H. White
,
Andrew K. Heidinger
, and
Steven A. Ackerman

Abstract

Satellite low-Earth-orbiting (LEO) and geostationary (GEO) imager estimates of cloud-top pressure (CTP) have many applications in both operations and in studying long-term variations in cloud properties. Recently, machine learning (ML) approaches have shown improvement upon physically based algorithms. However, ML approaches, and especially neural networks, can suffer from a lack of interpretability, making it difficult to understand what information is most useful for accurate predictions of cloud properties. We trained several neural networks to estimate CTP from the infrared channels of the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Baseline Imager (ABI). The main focus of this work is assessing the relative importance of each instrument’s infrared channels in neural networks trained to estimate CTP. We use several ML explainability methods to offer different perspectives on feature importance. These methods show many differences in the relative feature importance depending on the exact method used, but most agree on a few points. Overall, the 8.4- and 8.6-μm channels appear to be the most useful for CTP estimation on ABI and VIIRS, respectively, with other native infrared window channels and the 13.3-μm channel playing a moderate role. Furthermore, we find that the neural networks learn relationships that may account for properties of clouds such as opacity and cloud-top phase that otherwise complicate the estimation of CTP.

Significance Statement

Model interpretability is an important consideration for transitioning machine learning models to operations. This work applies several explainability methods in an attempt to understand what information is most important for estimating the pressure level at the top of a cloud from satellite imagers in a neural network model. We observe much disagreement between approaches, which motivates further work in this area but find agreement on the importance of channels in the infrared window region around 8.6 and 10–12 μm, informing future cloud property algorithm development. We also find some evidence suggesting that these neural networks are able to learn physically relevant variability in radiation measurements related to key cloud properties.

Free access
Qinqing Liu
,
Meijian Yang
,
Koushan Mohammadi
,
Dongjin Song
,
Jinbo Bi
, and
Guiling Wang

Abstract

A major challenge for food security worldwide is the large interannual variability of crop yield, and climate change is expected to further exacerbate this volatility. Accurate prediction of the crop response to climate variability and change is critical for short-term management and long-term planning in multiple sectors. In this study, using maize in the U.S. Corn Belt as an example, we train and validate multiple machine learning (ML) models predicting crop yield based on meteorological variables and soil properties using the leaving-one-year-out approach, and compare their performance with that of a widely used process-based crop model (PBM). Our proposed long short-term memory model with attention (LSTMatt) outperforms other ML models (including other variations of LSTM developed in this study) and explains 73% of the spatiotemporal variance of the observed maize yield, in contrast to 16% explained by the regionally calibrated PBM; the magnitude of yield prediction errors in LSTMatt is about one-third of that in the PBM. When applied to the extreme drought year 2012 that has no counterpart in the training data, the LSTMatt performance drops but still shows advantage over the PBM. Findings from this study suggest a great potential for out-of-sample application of the LSTMatt model to predict crop yield under a changing climate.

Significance Statement

Changing climate is expected to exacerbate extreme weather events, thus affecting global food security. Accurate estimation and prediction of crop productivity under extremes are crucial for long-term agricultural decision-making and climate adaptation planning. Here we seek to improve crop yield prediction from meteorological features and soil properties using machine learning approaches. Our long short-term memory (LSTM) model with attention and shortcut connection explains 73% of the spatiotemporal variance of the observed maize yield in the U.S. Corn Belt and outperforms a widely used process-based crop model even in an extreme drought year when meteorological conditions are significantly different from the training data. Our findings suggest great potential for out-of-sample application of the LSTM model to predict crop yield under a changing climate.

Free access
Ashesh Ashesh
,
Chia-Tung Chang
,
Buo-Fu Chen
,
Hsuan-Tien Lin
,
Boyo Chen
, and
Treng-Shi Huang

Abstract

Deep learning models are developed for high-resolution quantitative precipitation nowcasting (QPN) in Taiwan up to 3 h ahead. Many recent works aim to accurately predict relatively rare high-rainfall events with the help of deep learning. This rarity is often addressed by formulations that reweight the rare events. However, these formulations often carry a side effect of producing blurry rain-map nowcasts that overpredict in low-rainfall regions. Such nowcasts are visually less trustworthy and practically less useful for forecasters. We fix the trust issue by introducing a discriminator that encourages the model to generate realistic rain maps without sacrificing the predictive accuracy of rainfall extremes. Moreover, with consecutive attention across different hours, we extend the nowcasting time frame from typically 1 to 3 h to further address the needs for socioeconomic weather-dependent decision-making. By combining the discriminator and the attention techniques, the proposed model based on the convolutional recurrent neural network is trained with a dataset containing radar reflectivity and rain rates at a granularity of 10 min and predicts the hourly accumulated rainfall in the next three hours. Model performance is evaluated from both statistical and case-study perspectives. Statistical verification shows that the new model outperforms the current operational QPN techniques. Case studies further show that the model can capture the motion of rainbands in a frontal case and also provide an effective warning of urban-area torrential rainfall in an afternoon-thunderstorm case, implying that deep learning has great potential and is useful in 0–3-h nowcasting.

Free access
Amanda S. Black
,
Didier P. Monselesan
,
James S. Risbey
,
Bernadette M. Sloyan
,
Christopher C. Chapman
,
Abdelwaheb Hannachi
,
Doug Richardson
,
Dougal T. Squire
,
Carly R. Tozer
, and
Nikolay Trendafilov

Abstract

The ability to find and recognize patterns in high-dimensional geophysical data is fundamental to climate science and critical for meaningful interpretation of weather and climate processes. Archetypal analysis (AA) is one technique that has recently gained traction in the geophysical science community for its ability to find patterns based on extreme conditions. While traditional empirical orthogonal function (EOF) analysis can reveal patterns based on data covariance, AA seeks patterns from the points located at the edges of the data distribution. The utility of any objective pattern method depends on the properties of the data to which it is applied and the choices made in implementing the method. Given the relative novelty of the application of AA in geophysics it is important to develop experience in applying the method. We provide an assessment of the method, implementation, sensitivity, and interpretation of AA with respect to geophysical data. As an example for demonstration, we apply AA to a 39-yr sea surface temperature (SST) reanalysis dataset. We show that the decisions made to implement AA can significantly affect the interpretation of results, but also, in the case of SST, that the analysis is exceptionally robust under both spatial and temporal coarse graining.

Significance Statement

Archetypal analysis (AA), when applied to geophysical fields, is a technique designed to find typical configurations or modes in underlying data. This technique is relatively new to the geophysical science community and has been shown to be beneficial to the interpretation of extreme modes of the climate system. The identification of extreme modes of variability and their expression in day-to-day weather or state of the climate at longer time scales may help in elucidating the interplay between major teleconnection drivers and their evolution in a changing climate. The purpose of this work is to bring together a comprehensive report of the AA methodology using an SST reanalysis for demonstration. It is shown that the AA results are significantly affected by each implementation decision, but also can be resilient to spatiotemporal averaging. Any application of AA should provide a clear documentation of the choices made in applying the method.

Free access
Nithin Allwayin
,
Michael L. Larsen
,
Alexander G. Shaw
, and
Raymond A. Shaw

Abstract

Droplet-level interactions in clouds are often parameterized by a modified gamma fitted to a “global” droplet size distribution. Do “local” droplet size distributions of relevance to microphysical processes look like these average distributions? This paper describes an algorithm to search and classify characteristic size distributions within a cloud. The approach combines hypothesis testing, specifically, the Kolmogorov–Smirnov (KS) test, and a widely used class of machine learning algorithms for identifying clusters of samples with similar properties: density-based spatial clustering of applications with noise (DBSCAN) is used as the specific example for illustration. The two-sample KS test does not presume any specific distribution, is parameter free, and avoids biases from binning. Importantly, the number of clusters is not an input parameter of the DBSCAN-type algorithms but is independently determined in an unsupervised fashion. As implemented, it works on an abstract space from the KS test results, and hence spatial correlation is not required for a cluster. The method is explored using data obtained from the Holographic Detector for Clouds (HOLODEC) deployed during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. The algorithm identifies evidence of the existence of clusters of nearly identical local size distributions. It is found that cloud segments have as few as one and as many as seven characteristic size distributions. To validate the algorithm’s robustness, it is tested on a synthetic dataset and successfully identifies the predefined distributions at plausible noise levels. The algorithm is general and is expected to be useful in other applications, such as remote sensing of cloud and rain properties.

Significance Statement

A typical cloud can have billions of drops spread over tens or hundreds of kilometers in space. Keeping track of the sizes, positions, and interactions of all of these droplets is impractical, and, as such, information about the relative abundance of large and small drops is typically quantified with a “size distribution.” Droplets in a cloud interact locally, however, so this work is motivated by the question of whether the cloud droplet size distribution is different in different parts of a cloud. A new method, based on hypothesis testing and machine learning, determines how many different size distributions are contained in a given cloud. This is important because the size distribution describes processes such as cloud droplet growth and light transmission through clouds.

Free access
Peter D. Dueben
,
Martin G. Schultz
,
Matthew Chantry
,
David John Gagne II
,
David Matthew Hall
, and
Amy McGovern

Abstract

Benchmark datasets and benchmark problems have been a key aspect for the success of modern machine learning applications in many scientific domains. Consequently, an active discussion about benchmarks for applications of machine learning has also started in the atmospheric sciences. Such benchmarks allow for the comparison of machine learning tools and approaches in a quantitative way and enable a separation of concerns for domain and machine learning scientists. However, a clear definition of benchmark datasets for weather and climate applications is missing with the result that many domain scientists are confused. In this paper, we equip the domain of atmospheric sciences with a recipe for how to build proper benchmark datasets, a (nonexclusive) list of domain-specific challenges for machine learning is presented, and it is elaborated where and what benchmark datasets will be needed to tackle these challenges. We hope that the creation of benchmark datasets will help the machine learning efforts in atmospheric sciences to be more coherent, and, at the same time, target the efforts of machine learning scientists and experts of high-performance computing to the most imminent challenges in atmospheric sciences. We focus on benchmarks for atmospheric sciences (weather, climate, and air-quality applications). However, many aspects of this paper will also hold for other aspects of the Earth system sciences or are at least transferable.

Significance Statement

Machine learning is the study of computer algorithms that learn automatically from data. Atmospheric sciences have started to explore sophisticated machine learning techniques and the community is making rapid progress on the uptake of new methods for a large number of application areas. This paper provides a clear definition of so-called benchmark datasets for weather and climate applications that help to share data and machine learning solutions between research groups to reduce time spent in data processing, to generate synergies between groups, and to make tool developments more targeted and comparable. Furthermore, a list of benchmark datasets that will be needed to tackle important challenges for the use of machine learning in atmospheric sciences is provided.

Free access