Browse

You are looking at 121 - 130 of 118,421 items for :

  • Refine by Access: All Content x
Clear All
Boyin Huang, Chunying Liu, Eric Freeman, Garrett Graham, Tom Smith, and Huai-Min Zhang

Abstract

NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) has recently been updated to v2.1 (January 2016–present). Its accuracy may impact the climate assessment, monitoring and prediction, and environment-related applications. Its performance, together with those of seven other well-known sea surface temperature (SST) products, is assessed by comparison with buoy and Argo observations in the global oceans on daily 0.25°×0.25° resolution from January 2016 to June 2020. These seven SST products are NASA MUR25, GHRSST GMPE, BoM GAMSSA, UKMO OSTIA, NOAA GPB, ESA CCI, and CMC.

Our assessments indicate that biases and root-mean-square-difference (RMSDs) in reference to all buoys and all Argo floats are low in DOISST. The bias in reference to the independent 10% of buoy SSTs remains low in DOISST, but the RMSD is slightly higher in DOISST than in OSTIA and CMC. The biases in reference to the independent 10% of Argo observations are low in CMC, DOISST, and GMPE; and RMSDs are low in GMPE and CMC. The biases are similar in GAMSSA, OSTIA, GPB, and CCI whether they are compared against all buoys, all Argo, or the 10% of buoy or 10% of Argo observations, while the RMSDs against Argo observations are slightly smaller than those against buoy observations. These features indicate a good performance of DOISST v2.1 among the eight products, which may benefit from ingesting the Argo observations by expanding global and regional spatial coverage of in situ observations for effective bias correction of satellite data.

Restricted access
Omar V. Müller, Pier Luigi Vidale, Benoît Vannière, Reinhard Schiemann, and Patrick C. McGuire

Abstract

Previous studies showed that high-resolution GCMs overestimate land precipitation when compared against observation-based data. Particularly, high-resolution HadGEM3-GC3.1 shows a significant precipitation increase in mountainous regions, where the scarcity of gauge stations increases the uncertainty of gridded observations and reanalyses. This work evaluates such precipitation uncertainties indirectly through the assessment of river discharge, considering that an increase of ~10% in land precipitation produces ~28% more runoff when the resolution is enhanced from 1° to 0.25°, and ~50% of the global runoff is produced in 27% of global land dominated by mountains. We diagnosed the river flow by routing the runoff generated by HadGEM3-GC3.1 low- and high-resolution simulations. The river flow is evaluated using a set of 344 monitored catchments distributed around the world. We also infer the global discharge by constraining the simulations with observations following a novel approach that implies bias correction in monitored rivers with two methods, and extension of the correction to the river mouth, and along the coast. Our global discharge estimate is 47.4±1.6×103 km 3 yr −1, which is closer to the original high-resolution estimate (50.5 × 103 km 3 yr −1) than to the low-resolution (39.6 × 103 km 3 yr −1). The assessment suggests that high-resolution simulations performbetter in mountainous regions, either because the better-defined orography favours the placement of precipitation in the correct catchment, leading to a more accurate distribution of runoff, or the orographic precipitation increases, reducing the dry runoff bias of coarse resolution simulations. However, high-resolution slightly increases wet biases in catchments dominated by flat terrain. The improvement of model parameterizations and tuning may reduce the remaining errors in high-resolution simulations.

Restricted access
Yuqing Zhang, Qinglong You, Guangxiong Mao, Changchun Chen, Xin Li, and Jinhua Yu

Abstract

It is essential to assess flash drought risk based on a reliable flash drought intensity (severity) index incorporating comprehensive information of the rapid decline (“flash”) in soil moisture towards drought conditions and soil moisture thresholds belonging to the “drought” category. In this study, we used the Gan River Basin as an example to define a flash drought intensity index that can be calculated for individual time steps (pentads) during a flash drought period over a given grid (or station). The severity of a complete flash drought event is the sum of the intensity values during the flash drought. We explored the spatial and temporal characteristics of flash droughts with different grades based on their respective severities. The results show that decreases in total cloud cover, precipitation, and relative humidity, as well as increases in 500 hPa geopotential height, convective inhibition, temperature, vapour pressure deficit, and wind speed can create favorable conditions for the occurrence of flash droughts. Although flash droughts are relatively frequent in the central and southern parts of the basin, the severity is relatively high in the northern part of the basin due to longer duration. Flash drought severity shows a slightly downward trend due to decreases in frequency, duration, and intensity from 1961 to 2018. Extreme and exceptional flash droughts decrease significantly while moderate and severe flash droughts trend slightly upward. Flash drought severity appears to be more affected by the interaction between duration and intensity as the grade increases from mild to severe. The frequency and duration of flash droughts are higher in July to October. The southern part of the basin is more prone to moderate and severe flash droughts, while the northern parts of the basin are more vulnerable to extreme and exceptional flash droughts due to longer durations and greater severities than other parts. Moderate, severe, extreme, and exceptional flash droughts occurred approximately every 3-6, 5-15, 10-50, and 30-200 year intervals, respectively, based on the copula analysis.

Restricted access
Julia A. Shates, Claire Pettersen, Tristan S. L’Ecuyer, Steve J. Cooper, Mark S. Kulie, and Norman B. Wood

Abstract

The prevailing snowfall regimes at two Scandinavian sites, Haukeliseter, Norway and Kiruna, Sweden, are documented using ground-based in-situ and remote sensing methods. Micro Rain Radar (MRR) profiles indicate three distinct snowfall regimes occur at both sites: shallow, deep, and intermittent snowfall. The shallow snowfall regime produces the lowest mean snowfall rates and radar echo tops are confined below 1.5 km above ground level (AGL). Shallow snowfall occurs under areas of large scale subsidence with a moist boundary layer and dry air aloft. The atmospheric ridge coinciding with shallow snowfall is highly anomalous over Haukeliseter, but is more common in Kiruna where shallow snowfall was frequently observed. The shallow snowfall particle size distributions (PSDs) are broad with lower particle concentrations than other regimes, especially small particles. Deep snowfall events exhibit MRR profiles that extend above 2 km AGL, and tend to be associated with weak low pressure and high relative humidity throughout the troposphere. The PSDs in deep events are narrower with high concentrations of small particles. Increasing MRR reflectivity towards the surface suggests aggregation as a possible growth process during deep snowfall events. The heaviest mean snowfall rates are associated with intermittent events that are characterized by deep MRR profiles, but have variations in intensity and height. The intermittent regime is associated with anomalous, deep low pressure along the coast of Norway, and enhanced relative humidity at lower levels. The PSDs reveal high concentrations of small and large particles. The analysis reveals that there are unique characteristics of shallow, deep, and intermittent snowfall regimes that are common between the sites.

Restricted access
Qianrong Ma, Jie Zhang, Yujun Ma, Asaminew Teshome Game, Zhiheng Chen, Yi Chang, and Meichen Liu

Abstract

The variability of extreme precipitation in eastern Central Asia (ECA) during summer (June–August) and its corresponding mechanisms were investigated from a multi-scale synergy perspective. Extreme precipitation in ECA displayed a quasi-monopole increasing pattern with abrupt change since 2000/2001, which was likely dominated by increased high latitude North Atlantic SST anomalies as shown by diagnosed and numerical experiment results. Increased SST via adjusting the quasi-stationary wave train which related to the negative North Atlantic Oscillation and the East Atlantic/Western Russia pattern guided cyclonic anomaly in CA, deepened the Balkhash Lake trough and enhanced the moisture convergence in ECA. These anomalies also exhibited interdecadal enhancement after 2000. On the synoptic-scale, two synoptic transient wave trains correlated with extreme precipitation in ECA by amplifying the amplitude of the quasi-stationary waves and guiding transient eddies in ECA. The induced transient eddies and deepened Balkhash Lake trough strengthened positive meridional vorticity advection and local positive vorticity, which promoted ascending motions, and guided the southerly warm moisture in ECA especially after 2000. Meanwhile, additional meso-scale vortices were stimulated and strengthened near the Tianshan Mountain in front of the wave trough, which, together with the enhanced meridional circulation, further increased extreme precipitation in ECA.

Restricted access
Matthew Henry and Geoffrey K. Vallis

Abstract

Observations of warm past climates and projections of future climate change show that the Arctic warms more than the global mean, particularly during winter months. Previous work has attributed this reduced Arctic land seasonality to the effects of sea ice or clouds. In this paper, we show that the reduced Arctic land seasonality is a robust consequence of the relatively small surface heat capacity of land and the nonlinearity of the temperature dependence of surface longwave emission, without recourse to other processes or feedbacks. We use a General Circulation Model (GCM) with no clouds or sea ice and a simple representation of land. In the annual mean, the equator-to-pole surface temperature gradient falls with increasing CO2, but this is only a near-surface phenomenon and is not caused by the change in total meridional heat transport, which is virtually unaltered. The high-latitude land has about twice as much warming in winter than in summer, whereas high-latitude ocean has very little seasonality in warming. A surface energy balance model shows how the combination of the smaller surface heat capacity of land and the nonlinearity of the temperature dependence of surface longwave emission gives rise to the reduced seasonality of the land surface. The increase in evaporation over land also leads to winter amplification of warming over land, although amplification still occurs without it. While changes in clouds, sea ice, and ocean heat transport undoubtedly play a role in high-latitude warming, these results show that enhanced land surface temperature warming in winter can happen in their absence for robust reasons.

Restricted access
Sanjib Sharma, Michael Gomez, Klaus Keller, Robert Nicholas, and Alfonso Mejia

Abstract

Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.

Restricted access
Georgios Deskos, Joseph C. Y. Lee, Caroline Draxl, and Michael A. Sprague

Abstract

We present a review of existing wind-wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave phaseaveraged, sea-surface-roughness models and (ii) the wave phase-resolved models. Both categories are discussed from their implementation, validity, and computational efficiency viewpoints with emphasis given on their applicability in offshore wind energy problems. In addition to the various models discussed, a review of laboratory-scale and field-measurement databases are presented thereafter. The majority of the presented data have been gathered over many decades of studying air-sea interaction phenomena, with the most recent ones compiled to reflect an offshore wind energy perspective. Both provide valuable data for model validation. Finally, we also discuss the modeling knowledge gaps and computational challenges ahead.

Restricted access
Youtong Zheng, Haipeng Zhang, and Zhanqing Li

Abstract

Surface latent heat flux (LHF) has been considered as the determinant driver of the stratocumulus-to-cumulus transition (SCT). The distinct signature of the LHF in driving the SCT, however, has not been found in observations. This motivates us to ask: how determinant is the LHF to SCT? To answer it, we conduct large-eddy simulations in a Lagrangian setup in which the sea-surface temperature increases over time to mimic a low-level cold air advection. To isolate the role of LHF, we conduct a mechanism-denial experiment in which the LHF adjustment is turned off. The simulations confirm the indispensable roles of LHF in sustaining (although not initiating) the boundary layer decoupling (first stage of SCT) and driving the cloud regime transition (second stage of SCT). However, using theoretical arguments and LES results, we show that decoupling can happen without the need for LHF to increase as long as the capping inversion is weak enough to ensure high entrainment efficiency. The high entrainment efficiency alone cannot sustain the decoupled state without the help of LHF adjustment, leading to the recoupling of the boundary layer that eventually becomes cloud-free. Interestingly, the stratocumulus sheet is sustained longer without LHF adjustment. The mechanisms underlying the findings are explained from the perspectives of cloud-layer budgets of energy (first stage) and liquid water path (second stage).

Restricted access
V.V. Sterlyadkin, K.V. Kulikovsky, A.V. Kuzmin, E.A. Sharkov, and M.V. Likhacheva

Abstract

A direct optical method for measuring the “instantaneous” profile of the sea surface with an accuracy of 1 mm and a spatial resolution of 3 mm is described. Surface profile measurements can be carried out on spatial scales from units of millimeters to units of meters with an averaging time of 10−4 s. The method is based on the synchronization of the beginning of scanning a laser beam over the sea surface and the beginning of recording the radiation scattered on the surface onto the video camera matrix. The heights of all points of the profile are brought to a single point in time, which makes it possible to obtain “instantaneous” profiles of the sea surface with the frequency of video recording. The measurement technique and data processing algorithm are described. The errors of the method are substantiated. The results of field measurements of the parameters of sea waves are presented: amplitude spectra, distribution of slopes at various spatial averaging scales. The applied version of the wave recorder did not allow recording capillary oscillations, but with some modernization it will be possible. The method is completely remote, does not distort the properties of the surface, is not affected by wind, waves and sea currents, it allows you to measure the proportion of foam on the surface. The possibility of applying the proposed method at any time of the day and in a wide range of weather conditions has been experimentally proved.

Restricted access