Browse

You are looking at 121 - 130 of 2,825 items for :

  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
Jadwiga H. Richter, Kathy Pegion, Lantao Sun, Hyemi Kim, Julie M. Caron, Anne Glanville, Emerson LaJoie, Stephen Yeager, Who M. Kim, Ahmed Tawfik, and Dan Collins

Abstract

There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as tropospheric modes of variability can also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth System Model, version 1 (CESM1), in the default version of the model as well as a version with the improved representation of stratospheric variability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4.

Restricted access
Caroline Jouan, Jason A. Milbrandt, Paul A. Vaillancourt, Frédérick Chosson, and Hugh Morrison

Abstract

A parameterization for the subgrid-scale cloud and precipitation fractions has been incorporated into the Predicted Particle Properties (P3) microphysics scheme for use in atmospheric models with relatively coarse horizontal resolution. The modified scheme was tested in a simple 1D kinematic model and in the Canadian Global Environmental Multiscale (GEM) model using an operational global NWP configuration with a 25-km grid spacing. A series of 5-day forecast simulations was run using P3 and the much simpler operational Sundqvist condensation scheme as a benchmark for comparison. The effects of using P3 in a global GEM configuration, with and without the modifications, were explored through statistical metrics of common forecast fields against upper-air and surface observations. Diagnostics of state variable tendencies from various physics parameterizations were examined to identify possible sources of errors resulting from the use of the modified scheme. Sensitivity tests were performed on the coupling between the deep convection parameterization scheme and the microphysics, specifically regarding assumptions in the physical properties of detrained ice. It was found that even without recalibration of the suite of moist physical parameterizations, substituting the Sundqvist condensation scheme with the modified P3 microphysics resulted in some significant improvements to the temperature and geopotential height bias throughout the troposphere and out to day 5, but with degradation to error standard deviation toward the end of the integrations, as well as an increase in the positive bias of precipitation quantities. The modified P3 scheme was thus shown to hold promise for potential use in coarse-resolution NWP systems.

Open access
Gary M. Lackmann, Brian Ancell, Matthew Bunkers, Ben Kirtman, Karen Kosiba, Amy McGovern, Lynn McMurdie, Zhaoxia Pu, Elizabeth Ritchie, and Henry P. Huntington
Open access
Pao-Liang Chang, Wei-Ting Fang, Pin-Fang Lin, and Yu-Shuang Tang

Abstract

As Typhoon Goni (2015) passed over Ishigaki Island, a maximum gust speed of 71 m s−1 was observed by a surface weather station. During Typhoon Goni’s passage, mountaintop radar recorded antenna elevation angle oscillations, with a maximum amplitude of ~0.2° at an elevation angle of 0.2°. This oscillation phenomenon was reflected in the reflectivity and Doppler velocity fields as Typhoon Goni’s eyewall encompassed Ishigaki Island. The main antenna oscillation period was approximately 0.21–0.38 s under an antenna rotational speed of ~4 rpm. The estimated fundamental vibration period of the radar tower is approximately 0.25–0.44 s, which is comparable to the predominant antenna oscillation period and agrees with the expected wind-induced vibrations of buildings. The reflectivity field at the 0.2° elevation angle exhibited a phase shift signature and a negative correlation of −0.5 with the antenna oscillation, associated with the negative vertical gradient of reflectivity. FFT analysis revealed two antenna oscillation periods at 0955–1205 and 1335–1445 UTC 23 August 2015. The oscillation phenomenon ceased between these two periods because Typhoon Goni’s eye moved over the radar site. The VAD analysis-estimated wind speeds at a range of 1 km for these two antenna oscillation periods exceeded 45 m s−1, with a maximum value of approximately 70 m s−1. A bandpass filter QC procedure is proposed to filter out the predominant wavenumbers (between 40 and 70) for the reflectivity and Doppler velocity fields. The proposed QC procedure is indicated to be capable of mitigating the major signals resulting from antenna oscillations.

Open access
Nathan J. L. Lenssen, Lisa Goddard, and Simon Mason

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant source of seasonal climate predictability. This study quantifies the historical impact of ENSO on seasonal precipitation through an update of the global ENSO teleconnection maps of Mason and Goddard. Many additional teleconnections are detected due to better handling of missing values and 20 years of additional, higher quality data. These global teleconnection maps are used as deterministic and probabilistic empirical seasonal forecasts in a verification study. The probabilistic empirical forecast model outperforms climatology in the tropics demonstrating the value of a forecast derived from the expected precipitation anomalies given the ENSO phase. Incorporating uncertainty due to SST prediction shows that teleconnection maps are skillful in predicting tropical precipitation up to a lead time of 4 months. The historical IRI seasonal forecasts generally outperform the empirical forecasts made with the teleconnection maps, demonstrating the additional value of state-of-the-art dynamical-based seasonal forecast systems. Additionally, the probabilistic empirical seasonal forecasts are proposed as reference forecasts for future skill assessments of real-time seasonal forecast systems.

Open access
Peter Vogel, Peter Knippertz, Andreas H. Fink, Andreas Schlueter, and Tilmann Gneiting

Abstract

Precipitation forecasts are of large societal value in the tropics. Here, we compare 1–5-day ensemble predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF, 2009–17) and the Meteorological Service of Canada (MSC, 2009–16) over 30°S–30°N with an extended probabilistic climatology based on the Tropical Rainfall Measuring Mission 3 B42 gridded dataset. Both models predict rainfall occurrence better than the reference only over about half of all land points, with a better performance by MSC. After applying the postprocessing technique ensemble model output statistics, this fraction increases to 87% (ECMWF) and 82% (MSC). For rainfall amount there is skill in many tropical areas (about 60% of land points), which can be increased by postprocessing to 97% (ECMWF) and 88% (MSC). Forecasts for extremes (>20 mm) are only marginally worse than those of occurrence but do not improve as much through postprocessing, particularly over dry areas. Forecast performance is generally best over arid Australia and worst over oceanic deserts, the Andes and Himalayas, as well as over tropical Africa, where models misrepresent the high degree of convective organization, such that even postprocessed forecasts are hardly better than climatology. Skill of 5-day accumulated forecasts often exceeds that of shorter ranges, as timing errors matter less. An increase in resolution and major model update in 2010 has significantly improved ECMWF predictions. Especially over tropical Africa new techniques such as convection-permitting models or combined statistical-dynamical forecasts may be needed to generate skill beyond the climatological reference.

Restricted access
Jonny Mooneyham, Sean C. Crosby, Nirnimesh Kumar, and Brian Hutchinson

Abstract

Skillful nearshore wave forecasts are critical for providing timely alerts of hazardous wave events that impact navigation or recreational beach use. While typical forecasts provide bulk wave parameters (wave height and period), spectral details are needed to correctly predict wave and associated circulation dynamics in the nearshore region. Currently, global wave models, such as WAVEWATCH III (WW3), make spectral predictions, but do not assimilate regional buoy observations. Here, Spectral Wave Residual Learning Network (SWRL Net), a fully convolutional neural network, is trained to take recent WW3 forecasts and buoy observations, and produce corrections to frequency-directional WW3 spectra, transformed into directional buoy moments, for up to 24 h in the future. SWRL Net is trained with 10 years of collocated NOAA’s WW3 CFSR reanalysis predictions and buoy observations at three locations offshore of the U.S. western coast. At buoy locations SWRL Net residual corrections result in wave height root-mean-square error (RMSE) reductions of 23%–50% in the first 6 h and 10%–20% thereafter. Sea frequencies (5–10 s) show the most improvement compared to swell (12–20 s). SWRL Net reduces mean direction RMSE by 28%–54% and mean period RMSE by 20%–56% over 24 forecast hours. While each model is trained and tested at independent locations, SWRL Net exhibits generalization when introduced to data from other locations, suggesting future development may be composed of training sets from multiple locations.

Open access
Morten Køltzow, Barbara Casati, Thomas Haiden, and Teresa Valkonen

Abstract

Assessing the quality of precipitation forecasts requires observations, but all precipitation observations have associated uncertainties making it difficult to quantify the true forecast quality. One of the largest uncertainties is due to the wind-induced undercatch of solid precipitation gauge measurements. This study discusses how this impacts the verification of precipitation forecasts for Norway for one global model [the high-resolution version of the ECMWF Integrated Forecasting System (IFS-HRES)], and one high-resolution, limited-area model [Applications of Research to Operations at Mesoscale (MEPS)]. First, the forecasts are compared with high-quality reference measurements (less undercatch) and with more simple measurement equipment commonly available (substantial undercatch) at the Haukeliseter observation site. Then the verification is extended to include all Norwegian observation sites: 1) stratified by wind speed, since calm (windy) conditions experience less (more) undercatch; and 2) by applying transfer functions, which convert measured precipitation to what would have been measured with high-quality equipment with less undercatch, before the forecast–observation comparison is performed. Results show that the wind-induced undercatch of solid precipitation has a substantial impact on verification results. Furthermore, applying transfer functions to adjust for wind-induced undercatch of solid precipitation gives a more realistic picture of true forecast capabilities. In particular, estimates of systematic forecast biases are improved, and to a lesser degree, verification scores like correlation, RMSE, ETS, and stable equitable error in probability space (SEEPS). However, uncertainties associated with applying transfer functions are substantial and need to be taken into account in the verification process. Precipitation forecast verification for liquid and solid precipitation should be done separately whenever possible.

Open access
Jianing Feng, Yihong Duan, Qilin Wan, Hao Hu, and Zhaoxia Pu

Abstract

This work explores the impact of assimilating radial winds from the Chinese coastal Doppler radar on track, intensity, and quantitative precipitation forecasts (QPF) of landfalling tropical cyclones (TCs) in a numerical weather prediction model, focusing mainly on two aspects: 1) developing a new coastal radar super-observation (SO) processing method, namely, an evenly spaced thinning method (ESTM) that is fit for landfalling TCs, and 2) evaluating the performance of the radar radial wind data assimilation in QPFs of landfalling TCs with multiple TC cases. Compared to a previous method of generating SOs (i.e., the radially spaced thinning method), in which the density of SOs is equal within the radial space of a radar scanning volume, the SOs created by ESTM are almost evenly distributed in the horizontal grids of the model background, resulting in more observations located in the TC inner-core region being involved in SOs. The use of SOs from ESTM leads to more cyclonic wind innovation, and larger analysis increments of height and horizontal wind in the lower level in an ensemble Kalman filter data assimilation experiment with TC Mujigae (2015). Overall, forecasts of a TC’s landfalling position, intensity, and QPF are improved by radar data assimilation for all cases, including Mujigae and the other eight TCs that made landfall on the Chinese mainland in 2017. Specifically, through assimilation, TC landing position error and intensity error are reduced by 33% and 25%, respectively. The mean equitable threat score of extreme rainfall [>80 mm (3 h)−1] forecasts is doubled on average over all cases.

Restricted access
Charles M. Kuster, Terry J. Schuur, T. Todd Lindley, and Jeffrey C. Snyder

ABSTRACT

Research has shown that dual-polarization (dual-pol) data currently available to National Weather Service forecasters could provide important information about changes in a storm’s structure and intensity. Despite these new data being used gradually by forecasters more over time, they are still not used extensively to inform warning decisions because it is unclear how to apply dual-pol radar data to specific warning decisions. To address this knowledge gap, rapid-update (i.e., volumetric update time of 2.3 min or less) radar data of 45 storms in Oklahoma are used to examine one dual-pol signature, known as the differential reflectivity (Z DR) column, to relate this signature to warning decisions. Base data (i.e., Z DR, reflectivity, velocity) are used to relate Z DR columns to storm intensity, radar signatures such as upper-level reflectivity cores, and scientific conceptual models used by forecasters during the warning decision process. Analysis shows that 1) differences exist between the Z DR columns of severe and nonsevere storms, 2) Z DR columns develop and evolve prior to upper-level reflectivity cores, 3) rapid-update radar data provide a more complete picture of Z DR column evolution than traditional-update radar data (i.e., volumetric update time of about 5 min), and 4) Z DR columns provide a clearer and earlier indication of changes in updraft strength compared to reflectivity signatures. These findings suggest that Z DR columns can be used to inform warning decisions, increase warning confidence, and potentially increase warning lead time especially when they are integrated into existing conceptual models about a storm’s updraft and intensity.

Restricted access