Browse

You are looking at 141 - 150 of 2,852 items for :

  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
Nicholas P. Klingaman, Matthew Young, Amulya Chevuturi, Bruno Guimaraes, Liang Guo, Steven J. Woolnough, Caio A. S. Coelho, Paulo Y. Kubota, and Christopher E. Holloway

Abstract

Skillful and reliable predictions of week-to-week rainfall variations in South America, two to three weeks ahead, are essential to protect lives, livelihoods, and ecosystems. We evaluate forecast performance for weekly rainfall in extended austral summer (November–March) in four contemporary subseasonal systems, including a new Brazilian model, at 1–5-week leads for 1999–2010. We measure performance by the correlation coefficient (in time) between predicted and observed rainfall; we measure skill by the Brier skill score for rainfall terciles against a climatological reference forecast. We assess unconditional performance (i.e., regardless of initial condition) and conditional performance based on the initial phase of the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO). All models display substantial mean rainfall biases, including dry biases in Amazonia and wet biases near the Andes, which are established by week 1 and vary little thereafter. Unconditional performance extends to week 2 in all regions except for Amazonia and the Andes, but to week 3 only over northern, northeastern, and southeastern South America. Skill for upper- and lower-tercile rainfall extends only to week 1. Conditional performance is not systematically or significantly higher than unconditional performance; ENSO and MJO events provide limited “windows of opportunity” for improved S2S predictions that are region and model dependent. Conditional performance may be degraded by errors in predicted ENSO and MJO teleconnections to regional rainfall, even at short lead times.

Open access
Christopher A. Kerr, Louis J. Wicker, and Patrick S. Skinner

Abstract

The Warn-on-Forecast system (WoFS) provides short-term, probabilistic forecasts of severe convective hazards including tornadoes, hail, and damaging winds. WoFS initial conditions are created through frequent assimilation of radar (reflectivity and radial velocity), satellite, and in situ observations. From 2016 to 2018, 5-km radial velocity Cressman superob analyses were created to reduce the observation counts and subsequent assimilation computational costs. The superobbing procedure smooths the radial velocity and subsequently fails to accurately depict important storm-scale features such as mesocyclones. This study retrospectively assimilates denser, 3-km radial velocity analyses in lieu of the 5-km analyses for eight case studies during the spring of 2018. Although there are forecast improvements during and shortly after convection initiation, 3-km analyses negatively impact forecasts initialized when convection is ongoing, as evidenced by model failure and initiation of spurious convection. Therefore, two additional experiments are performed using adaptive assimilation of 3-km radial velocity observations. Initially, an updraft variance mask is applied that limits radial velocity assimilation to areas where the observations are more likely to be beneficial. This experiment reduces spurious convection as well as the number of observations assimilated, in some cases even below that of the 5-km analysis experiments. The masking, however, eliminates an advantage of 3-km radial velocity assimilation for convection initiation timing. This problem is mitigated by additionally assimilating 3-km radial velocity observations in locations where large differences exist between the observed and ensemble-mean reflectivity fields, which retains the benefits of the denser radial velocity analyses while reducing the number of observations assimilated.

Restricted access
Michael J. Erickson, Benjamin Albright, and James A. Nelson

Abstract

The Weather Prediction Center’s Excessive Rainfall Outlook (ERO) forecasts the probability of rainfall exceeding flash flood guidance within 40 km of a point. This study presents a comprehensive ERO verification between 2015 and 2019 using a combination of flooding observations and proxies. ERO spatial issuance frequency plots are developed to provide situational awareness for forecasters. Reliability of the ERO is assessed by computing fractional coverage of the verification within each probabilistic category. Probabilistic forecast skill is evaluated using the Brier skill score (BSS) and area under the relative operating characteristic (AUC). A “probabilistic observation” called practically perfect (PP) is developed and compared to the ERO as an additional measure of skill. The areal issuance frequency of the ERO varies spatially with the most abundant issuances spanning from the Gulf Coast to the Midwest and the Appalachians. ERO issuances occur most often in the summer and are associated with the Southwestern monsoon, mesoscale convective systems, and tropical cyclones. The ERO exhibits good reliability on average, although more recent trends suggest some ERO-defined probabilistic categories should be issued more frequently. AUC and BSS are useful bulk skill metrics, while verification against PP is useful in bulk and for shorter-term ERO evaluation. ERO forecasts are generally more skillful at shorter lead times in terms of AUC and BSS. There is no trend in ERO area size over 5 years, although ERO forecasts may be getting slightly more skillful in terms of critical success index when verified against the PP.

Restricted access
Yun Fan, Vladimir Krasnopolsky, Huug van den Dool, Chung-Yu Wu, and Jon Gottschalck

Abstract

Forecast skill from dynamical forecast models decreases quickly with projection time due to various errors. Therefore, post-processing methods, from simple bias correction methods to more complicated multiple linear regression-based Model Output Statistics, are used to improve raw model forecasts. Usually, these methods show clear forecast improvement over the raw model forecasts, especially for short-range weather forecasts. However, linear approaches have limitations because the relationship between predictands and predictors may be nonlinear. This is even truer for extended range forecasts, such as Week 3-4 forecasts.

In this study, neural network techniques are used to seek or model the relationships between a set of predictors and predictands, and eventually to improve Week 3-4 precipitation and 2-meter temperature forecasts made by the NOAA NCEP Climate Forecast System. Benefitting from advances in machine learning techniques in recent years, more flexible and capable machine learning algorithms and availability of big datasets enable us not only to explore nonlinear features or relationships within a given large dataset, but also to extract more sophisticated pattern relationships and co-variabilities hidden within the multi-dimensional predictors and predictands. Then these more sophisticated relationships and high-level statistical information are used to correct the model Week 3-4 precipitation and 2-meter temperature forecasts. The results show that to some extent neural network techniques can significantly improve the Week 3-4 forecast accuracy and greatly increase the efficiency over the traditional multiple linear regression methods.

Restricted access
John L. Cintineo, Michael J. Pavolonis, Justin M. Sieglaff, Anthony Wimmers, Jason Brunner, and Willard Bellon

Abstract

Intense thunderstorms threaten life and property, impact aviation, and are a challenging forecast problem, particularly without precipitation-sensing radar data. Trained forecasters often look for features in geostationary satellite images such as rapid cloud growth, strong and persistent overshooting tops, U- or V-shaped patterns in storm-top temperature (and associated above-anvil cirrus plumes), thermal couplets, intricate texturing in cloud albedo (e.g., “bubbling” cloud tops), cloud-top divergence, spatial and temporal trends in lightning, and other nuances to identify intense thunderstorms. In this paper, a machine-learning algorithm was employed to automatically learn and extract salient features and patterns in geostationary satellite data for the prediction of intense convection. Namely, a convolutional neural network (CNN) was trained on 0.64-μm reflectance and 10.35-μm brightness temperature from the Advanced Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper (GLM) on board GOES-16. Using a training dataset consisting of over 220 000 human-labeled satellite images, the CNN learned pertinent features that are known to be associated with intense convection and skillfully discriminated between intense and ordinary convection. The CNN also learned a more nuanced feature associated with intense convection—strong infrared brightness temperature gradients near cloud edges in the vicinity of the main updraft. A successive-permutation test ranked the most important predictors as follows: 1) ABI 10.35-μm brightness temperature, 2) ABI GLM flash-extent density, and 3) ABI 0.64-μm reflectance. The CNN model can provide forecasters with quantitative information that often foreshadows the occurrence of severe weather, day or night, over the full range of instrument-scan modes.

Restricted access
I-Han Chen, Jing-Shan Hong, Ya-Ting Tsai, and Chin-Tzu Fong

Abstract

Recently, the Central Weather Bureau of Taiwan developed a WRF- and WRF data assimilation (WRFDA)-based convective-scale data assimilation system to increase model predictability toward high-impact weather. In this study, we focus on afternoon thunderstorm (AT) prediction and investigate the following questions: 1) Is the designation of a rapid update cycle strategy with a blending scheme effective? 2) Can surface data assimilation contribute positively to AT prediction under the complex geography of Taiwan island? 3) What is the relative importance between radar and surface observation to AT prediction? 4) Can we increase the AT forecast lead time in the morning through data assimilation? Consecutive ATs from 30 June to 8 July 2017 are investigated. Five experiments, each having 240 continuous cycles, are designed. Results show that employing continuous cycles with a blending scheme mitigates model spinup compared with downscaled forecasts. Although there are few radar echoes before AT initiation, assimilating radar observations is still crucial since it largely corrects model errors in cycles. However, assimilating surface observations is more important compared with radar in terms of extending forecast lead time in the morning. Either radar or surface observations contribute positively, and assimilating both has the highest QPF score. Assimilating surface observations systematically improves surface wind and temperature predictions based on 240 cases. A case study demonstrates that the model can capture the AT initiation and development by assimilating surface and radar observations. Its cold pool and outflow boundary prediction are also improved. In this case, the assimilation of surface wind and water vapor in the morning contributes more compared with temperature and pressure.

Restricted access
Brice E. Coffer, Mateusz Taszarek, and Matthew D. Parker

Abstract

The near-ground wind profile exhibits significant control over the organization, intensity, and steadiness of low-level updrafts and mesocyclones in severe thunderstorms, and thus their probability of being associated with tornadogenesis. The present work builds upon recent improvements in supercell tornado forecasting by examining the possibility that storm-relative helicity (SRH) integrated over progressively shallower layers has increased skill in differentiating between significantly tornadic and nontornadic severe thunderstorms. For a population of severe thunderstorms in the United States and Europe, sounding-derived parameters are computed from the ERA5 reanalysis, which has significantly enhanced vertical resolution compared to prior analyses. The ERA5 is shown to represent U.S. convective environments similarly to the Storm Prediction Center’s mesoscale surface objective analysis, but its greater number of vertical levels in the lower troposphere permits calculations to be performed over shallower layers. In the ERA5, progressively shallower layers of SRH provide greater discrimination between nontornadic and significantly tornadic thunderstorms in both the United States and Europe. In the United States, the 0–100 m AGL layer has the highest forecast skill of any SRH layer tested, although gains are comparatively modest for layers shallower than 0–500 m AGL. In Europe, the benefit from using shallower layers of SRH is even greater; the lower-tropospheric SRH is by far the most skillful ingredient there, far exceeding related composite parameters like the significant tornado parameter (which has negligible skill in Europe).

Restricted access
Jadwiga H. Richter, Kathy Pegion, Lantao Sun, Hyemi Kim, Julie M. Caron, Anne Glanville, Emerson LaJoie, Stephen Yeager, Who M. Kim, Ahmed Tawfik, and Dan Collins

Abstract

There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as tropospheric modes of variability can also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth System Model, version 1 (CESM1), in the default version of the model as well as a version with the improved representation of stratospheric variability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4.

Restricted access
Caroline Jouan, Jason A. Milbrandt, Paul A. Vaillancourt, Frédérick Chosson, and Hugh Morrison

Abstract

A parameterization for the subgrid-scale cloud and precipitation fractions has been incorporated into the Predicted Particle Properties (P3) microphysics scheme for use in atmospheric models with relatively coarse horizontal resolution. The modified scheme was tested in a simple 1D kinematic model and in the Canadian Global Environmental Multiscale (GEM) model using an operational global NWP configuration with a 25-km grid spacing. A series of 5-day forecast simulations was run using P3 and the much simpler operational Sundqvist condensation scheme as a benchmark for comparison. The effects of using P3 in a global GEM configuration, with and without the modifications, were explored through statistical metrics of common forecast fields against upper-air and surface observations. Diagnostics of state variable tendencies from various physics parameterizations were examined to identify possible sources of errors resulting from the use of the modified scheme. Sensitivity tests were performed on the coupling between the deep convection parameterization scheme and the microphysics, specifically regarding assumptions in the physical properties of detrained ice. It was found that even without recalibration of the suite of moist physical parameterizations, substituting the Sundqvist condensation scheme with the modified P3 microphysics resulted in some significant improvements to the temperature and geopotential height bias throughout the troposphere and out to day 5, but with degradation to error standard deviation toward the end of the integrations, as well as an increase in the positive bias of precipitation quantities. The modified P3 scheme was thus shown to hold promise for potential use in coarse-resolution NWP systems.

Open access
Gary M. Lackmann, Brian Ancell, Matthew Bunkers, Ben Kirtman, Karen Kosiba, Amy McGovern, Lynn McMurdie, Zhaoxia Pu, Elizabeth Ritchie, and Henry P. Huntington
Open access