Browse
Abstract
Significant anomalies in frequency of summer extreme hot days (SEHDs) are broadly observed in the Asian monsoon region (AMR) in the post-ENSO summers. The delayed ENSO impacts are mainly conveyed by provoking the Indo-western Pacific Ocean capacitor (IPOC) effect that maintains the anomalous anticyclone in the western North Pacific. The related diabatic heating anomaly can trigger the westward-propagating Rossby wave to the Indian subcontinent, which increases the geopotential heights, reduces the cloud cover, and thus increases the seasonal surface temperature and SEHD frequency in the southern AMR. Besides, the reduced atmospheric moisture in the western North Pacific hinders the northward propagation of intraseasonal oscillation (ISO) and modulates the occurrence frequency of individual ISO phases, contributing to the significantly increased/decreased SEHDs in eastern China/Hokkaido, Japan, in the post–El Niño summers. The 25-model-ensemble mean of CMIP6 historical runs can reproduce well the observed SEHD anomalies in the southern AMR in the post-ENSO summers mainly due to the realistic simulation of ENSO impacts on the seasonal surface temperature, although a large intermodel spread exists due to different strengths of IPOC effect in each model owing to model biases in the mean state of the eastern tropical Pacific, the ENSO variance, and teleconnection to the Indian Ocean. Furthermore, future projections under the SSP5-8.5 scenario show that the delayed ENSO impacts on the southern AMR remain stable under global warming via a similar mechanism as in the observations and historical runs.
Abstract
Significant anomalies in frequency of summer extreme hot days (SEHDs) are broadly observed in the Asian monsoon region (AMR) in the post-ENSO summers. The delayed ENSO impacts are mainly conveyed by provoking the Indo-western Pacific Ocean capacitor (IPOC) effect that maintains the anomalous anticyclone in the western North Pacific. The related diabatic heating anomaly can trigger the westward-propagating Rossby wave to the Indian subcontinent, which increases the geopotential heights, reduces the cloud cover, and thus increases the seasonal surface temperature and SEHD frequency in the southern AMR. Besides, the reduced atmospheric moisture in the western North Pacific hinders the northward propagation of intraseasonal oscillation (ISO) and modulates the occurrence frequency of individual ISO phases, contributing to the significantly increased/decreased SEHDs in eastern China/Hokkaido, Japan, in the post–El Niño summers. The 25-model-ensemble mean of CMIP6 historical runs can reproduce well the observed SEHD anomalies in the southern AMR in the post-ENSO summers mainly due to the realistic simulation of ENSO impacts on the seasonal surface temperature, although a large intermodel spread exists due to different strengths of IPOC effect in each model owing to model biases in the mean state of the eastern tropical Pacific, the ENSO variance, and teleconnection to the Indian Ocean. Furthermore, future projections under the SSP5-8.5 scenario show that the delayed ENSO impacts on the southern AMR remain stable under global warming via a similar mechanism as in the observations and historical runs.
Abstract
Climate model fidelity in representing ENSO-induced teleconnection is assessed with process-oriented diagnostics that examine a chain of processes, from equatorial Pacific precipitation to the midlatitude circulation pattern over the Pacific–North American regions. Such processes are rarely addressed during model development. Using an upper-tropospheric divergent level, local vorticity gradient of the ambient zonal flow (
Significance Statement
The seasonal changes in tropical Pacific sea surface temperatures associated with El Niño events can have a significant impact in the atmospheric circulation through the North Pacific and on the annual climate variations over North America. Our skill in predicting these impacts depends critically on the ability of climate models to represent these global-scale connections accurately. We show a number of metrics that describe critical processes along this North Pacific pathway that can be used to examine the progress in climate model skill. In the future, these models could benefit significantly from using these metrics with the end goal of much improved predictions of El Niño–related variability.
Abstract
Climate model fidelity in representing ENSO-induced teleconnection is assessed with process-oriented diagnostics that examine a chain of processes, from equatorial Pacific precipitation to the midlatitude circulation pattern over the Pacific–North American regions. Such processes are rarely addressed during model development. Using an upper-tropospheric divergent level, local vorticity gradient of the ambient zonal flow (
Significance Statement
The seasonal changes in tropical Pacific sea surface temperatures associated with El Niño events can have a significant impact in the atmospheric circulation through the North Pacific and on the annual climate variations over North America. Our skill in predicting these impacts depends critically on the ability of climate models to represent these global-scale connections accurately. We show a number of metrics that describe critical processes along this North Pacific pathway that can be used to examine the progress in climate model skill. In the future, these models could benefit significantly from using these metrics with the end goal of much improved predictions of El Niño–related variability.
Abstract
In the last decade, three persistent warm blob events (2013/14, 2015, and 2019/20) in the northeast Pacific (NEP) have been hotly debated given their substantial effects on climate, ecosystems, and the socioeconomy. This study investigates the changes of such long-lived NEP warm blobs in terms of their intensity, duration, structure, and occurrence frequency under Shared Socioeconomic Pathway (SSP) 119 and 126 low-warming scenarios of phase 6 of the Coupled Model Intercomparison Project. Results show that the peak timing of the warm blobs shifts from the cold season to boreal summer. For the summer-peak warm blobs, their maximum intensity increases by 6.7% (10.0%) under the SSP119 (SSP126) scenario, but their duration reduces by 31.0% (20.4%) under the SSP119 (SSP126) scenario. In terms of their vertical structure, the most pronounced temperature signal is located at the surface, and their vertical penetration is mostly confined to the mixed layer, which becomes shallower in warming climates. Based on a mixed layer heat budget analysis, we reveal that a shoaling mixed layer depth plays a dominant role in driving the stronger intensity of the warm blobs under low-warming scenarios, while the stronger magnitude of ocean heat loss after their peaks explains the faster decay and thus shorter duration. Regarding occurrence frequency, the total number of the warm blobs does not change robustly in the low-warming climates. Following the summer peak of the warm blobs, extreme El Niño events may occur more frequently under the low-warming scenarios, possibly through stronger air–sea coupling induced by tropical Pacific southwesterly anomalies.
Abstract
In the last decade, three persistent warm blob events (2013/14, 2015, and 2019/20) in the northeast Pacific (NEP) have been hotly debated given their substantial effects on climate, ecosystems, and the socioeconomy. This study investigates the changes of such long-lived NEP warm blobs in terms of their intensity, duration, structure, and occurrence frequency under Shared Socioeconomic Pathway (SSP) 119 and 126 low-warming scenarios of phase 6 of the Coupled Model Intercomparison Project. Results show that the peak timing of the warm blobs shifts from the cold season to boreal summer. For the summer-peak warm blobs, their maximum intensity increases by 6.7% (10.0%) under the SSP119 (SSP126) scenario, but their duration reduces by 31.0% (20.4%) under the SSP119 (SSP126) scenario. In terms of their vertical structure, the most pronounced temperature signal is located at the surface, and their vertical penetration is mostly confined to the mixed layer, which becomes shallower in warming climates. Based on a mixed layer heat budget analysis, we reveal that a shoaling mixed layer depth plays a dominant role in driving the stronger intensity of the warm blobs under low-warming scenarios, while the stronger magnitude of ocean heat loss after their peaks explains the faster decay and thus shorter duration. Regarding occurrence frequency, the total number of the warm blobs does not change robustly in the low-warming climates. Following the summer peak of the warm blobs, extreme El Niño events may occur more frequently under the low-warming scenarios, possibly through stronger air–sea coupling induced by tropical Pacific southwesterly anomalies.
Abstract
The dependence of future regional sea level changes on ocean model resolution is investigated based on Max Planck Institute Earth System Model (MPI-ESM) simulations with varying spatial resolution, ranging from low resolution (LR), high resolution (HR), to eddy-rich (ER) resolution. Each run was driven by the shared socioeconomic pathway (SSP) 5-8.5 (fossil-fueled development) forcing. For each run the dynamic sea level (DSL) changes are evaluated by comparing the time mean of the SSP5-8.5 climate change scenario for the years 2080–99 to the time mean of the historical simulation for the years 1995–2014. Respective results indicate that each run reproduces previously identified large-scale DSL change patterns. However, substantial sensitivity of the projected DSL changes can be found on a regional to local scale with respect to model resolution. In comparison to models with parameterized eddies (HR and LR), enhanced sea level changes are found in the North Atlantic subtropical region, the Kuroshio region, and the Arctic Ocean in the model version capturing mesoscale processes (ER). Smaller yet still significant sea level changes can be found in the Southern Ocean and the North Atlantic subpolar region. These sea level changes are associated with changes in the regional circulation. Our study suggests that low-resolution sea level projections should be interpreted with care in regions where major differences are revealed here, particularly in eddy active regions such as the Kuroshio, Antarctic Circumpolar Current, Gulf Stream, and East Australian Current.
Significance Statement
Sea level change is expected to be more realistic when mesoscale processes are explicitly resolved in climate models. However, century-long simulations with eddy-resolving models are computationally expensive. Therefore, current sea level projections are based on climate models in which ocean eddies are parameterized. The representation of sea level by these models considerably differs from actual observations, particularly in the eddy-rich regions such as the Southern Ocean and the western boundary currents, implying erroneous ocean circulation that affects the sea level projections. Taking this into account, we review the sea level change pattern in a climate model with featuring an eddy-rich ocean model and compare the results to state-of-the-art coarser-resolution versions of the same model. We found substantial DSL differences in the global ocean between the different resolutions. Relatively small-scale ocean eddies can hence have profound large-scale effects on the projected sea level which may affect our understanding of future sea level change as well as the planning of future investments to adapt to climate change around the world.
Abstract
The dependence of future regional sea level changes on ocean model resolution is investigated based on Max Planck Institute Earth System Model (MPI-ESM) simulations with varying spatial resolution, ranging from low resolution (LR), high resolution (HR), to eddy-rich (ER) resolution. Each run was driven by the shared socioeconomic pathway (SSP) 5-8.5 (fossil-fueled development) forcing. For each run the dynamic sea level (DSL) changes are evaluated by comparing the time mean of the SSP5-8.5 climate change scenario for the years 2080–99 to the time mean of the historical simulation for the years 1995–2014. Respective results indicate that each run reproduces previously identified large-scale DSL change patterns. However, substantial sensitivity of the projected DSL changes can be found on a regional to local scale with respect to model resolution. In comparison to models with parameterized eddies (HR and LR), enhanced sea level changes are found in the North Atlantic subtropical region, the Kuroshio region, and the Arctic Ocean in the model version capturing mesoscale processes (ER). Smaller yet still significant sea level changes can be found in the Southern Ocean and the North Atlantic subpolar region. These sea level changes are associated with changes in the regional circulation. Our study suggests that low-resolution sea level projections should be interpreted with care in regions where major differences are revealed here, particularly in eddy active regions such as the Kuroshio, Antarctic Circumpolar Current, Gulf Stream, and East Australian Current.
Significance Statement
Sea level change is expected to be more realistic when mesoscale processes are explicitly resolved in climate models. However, century-long simulations with eddy-resolving models are computationally expensive. Therefore, current sea level projections are based on climate models in which ocean eddies are parameterized. The representation of sea level by these models considerably differs from actual observations, particularly in the eddy-rich regions such as the Southern Ocean and the western boundary currents, implying erroneous ocean circulation that affects the sea level projections. Taking this into account, we review the sea level change pattern in a climate model with featuring an eddy-rich ocean model and compare the results to state-of-the-art coarser-resolution versions of the same model. We found substantial DSL differences in the global ocean between the different resolutions. Relatively small-scale ocean eddies can hence have profound large-scale effects on the projected sea level which may affect our understanding of future sea level change as well as the planning of future investments to adapt to climate change around the world.
Abstract
Interpreting behaviors of low-level clouds (LLCs) in a climate model is often not straightforward. This is particularly so over polar oceans where frozen and unfrozen surfaces coexist, with horizontal winds streaming across them, shaping LLCs. To add clarity to this interpretation issue, we conduct budget analyses of LLCs using a global atmosphere model with a fully prognostic cloud scheme. After substantiating the model’s skill in reproducing observed LLCs, we use the modeled budgets of cloud fraction and water content to elucidate physics governing changes of LLCs across sea ice edges. Contrasting LLC regimes between open water and sea ice are found. LLCs over sea ice are primarily maintained by large-scale condensation: intermittent intrusions of maritime humid air and surface radiative cooling jointly sustain high relative humidity near the surface, forming extensive but tenuous stratus. This contrasts with the LLCs over open water where the convection and boundary layer condensation sustain the LLCs on top of deeper boundary layers. Such contrasting LLC regimes are influenced by the direction of horizontal advection. During on-ice flow, large-scale condensation dominates the regions, both open water and sea ice regions, forming clouds throughout the lowest several kilometers of the troposphere. During off-ice flow, as cold air masses travel over the open water, the cloud layer lifts and becomes denser, driven by increased surface fluxes that generate LLCs through boundary layer condensation and convective detrainment. These results hold in all seasons except summer when the atmosphere–surface decoupling substantially reduces the footprints of surface type changes.
Abstract
Interpreting behaviors of low-level clouds (LLCs) in a climate model is often not straightforward. This is particularly so over polar oceans where frozen and unfrozen surfaces coexist, with horizontal winds streaming across them, shaping LLCs. To add clarity to this interpretation issue, we conduct budget analyses of LLCs using a global atmosphere model with a fully prognostic cloud scheme. After substantiating the model’s skill in reproducing observed LLCs, we use the modeled budgets of cloud fraction and water content to elucidate physics governing changes of LLCs across sea ice edges. Contrasting LLC regimes between open water and sea ice are found. LLCs over sea ice are primarily maintained by large-scale condensation: intermittent intrusions of maritime humid air and surface radiative cooling jointly sustain high relative humidity near the surface, forming extensive but tenuous stratus. This contrasts with the LLCs over open water where the convection and boundary layer condensation sustain the LLCs on top of deeper boundary layers. Such contrasting LLC regimes are influenced by the direction of horizontal advection. During on-ice flow, large-scale condensation dominates the regions, both open water and sea ice regions, forming clouds throughout the lowest several kilometers of the troposphere. During off-ice flow, as cold air masses travel over the open water, the cloud layer lifts and becomes denser, driven by increased surface fluxes that generate LLCs through boundary layer condensation and convective detrainment. These results hold in all seasons except summer when the atmosphere–surface decoupling substantially reduces the footprints of surface type changes.
Abstract
This study evaluates tropical cyclone (TC) rainfall structures in the CMIP6 HighResMIP global climate model (GCM) simulations against satellite rainfall retrievals. We specifically focus on TCs within the deep tropics (25°S–25°N). Analysis of TC rain rate composites indicates that in comparison to the satellite observations at the same intensity, many HighResMIP simulations tend to overproduce rain rates around TCs, in terms of both maximum rain rate magnitude and area-averaged rain rates. In addition, as model horizontal resolution increases, the magnitude of the peak rain rate appears to increase. However, the area-averaged rain rates decrease with increasing horizontal resolution, partly due to the TC eyewall being located closer to the TC center, thus occupying a smaller area and contributing less to the area-averaged rain rates. The effect of ocean coupling is to lower the TC rain rates, bringing them closer to the satellite observations, due to reduced horizontal moisture flux convergence and surface latent heat flux beneath TCs. Examination of horizontal rain rate distributions indicates that vertical wind shear–induced rainfall asymmetries in HighResMIP-simulated TCs are qualitatively consistent with the observations. In addition, a positive relationship is observed between the area-averaged inner-core rainfall and TC intensification likelihoods across the HighResMIP simulations, as GCM simulations producing stronger TCs more frequently have the greater rainfall close to the center, in agreement with previous theoretical and GCM simulation results.
Abstract
This study evaluates tropical cyclone (TC) rainfall structures in the CMIP6 HighResMIP global climate model (GCM) simulations against satellite rainfall retrievals. We specifically focus on TCs within the deep tropics (25°S–25°N). Analysis of TC rain rate composites indicates that in comparison to the satellite observations at the same intensity, many HighResMIP simulations tend to overproduce rain rates around TCs, in terms of both maximum rain rate magnitude and area-averaged rain rates. In addition, as model horizontal resolution increases, the magnitude of the peak rain rate appears to increase. However, the area-averaged rain rates decrease with increasing horizontal resolution, partly due to the TC eyewall being located closer to the TC center, thus occupying a smaller area and contributing less to the area-averaged rain rates. The effect of ocean coupling is to lower the TC rain rates, bringing them closer to the satellite observations, due to reduced horizontal moisture flux convergence and surface latent heat flux beneath TCs. Examination of horizontal rain rate distributions indicates that vertical wind shear–induced rainfall asymmetries in HighResMIP-simulated TCs are qualitatively consistent with the observations. In addition, a positive relationship is observed between the area-averaged inner-core rainfall and TC intensification likelihoods across the HighResMIP simulations, as GCM simulations producing stronger TCs more frequently have the greater rainfall close to the center, in agreement with previous theoretical and GCM simulation results.
Abstract
A set of diagnostics based on simple, statistical relationships between precipitation and the thermodynamic environment in observations is implemented to assess phase 6 of the Coupled Model Intercomparison Project (CMIP6) model behavior with respect to precipitation. Observational data from the Atmospheric Radiation Measurement (ARM) permanent field observational sites are augmented with satellite observations of precipitation and temperature as an observational baseline. A robust relationship across observational datasets between column water vapor (CWV) and precipitation, in which conditionally averaged precipitation exhibits a sharp pickup at some critical CWV value, provides a useful convective onset diagnostic for climate model comparison. While a few models reproduce an appropriate precipitation pickup, most models begin their pickup at too low CWV and the increase in precipitation with increasing CWV is too weak. Convective transition statistics compiled in column relative humidity (CRH) partially compensate for model temperature biases—although imperfectly since the temperature dependence is more complex than that of column saturation. Significant errors remain in individual models and weak pickups are generally not improved. The conditional-average precipitation as a function of CRH can be decomposed into the product of the probability of raining and mean precipitation during raining times (conditional intensity). The pickup behavior is primarily dependent on the probability of raining near the transition and on the conditional intensity at higher CRH. Most models roughly capture the CRH dependence of these two factors. However, compensating biases often occur: model conditional intensity that is too low at a given CRH is compensated in part by excessive probability of precipitation.
Abstract
A set of diagnostics based on simple, statistical relationships between precipitation and the thermodynamic environment in observations is implemented to assess phase 6 of the Coupled Model Intercomparison Project (CMIP6) model behavior with respect to precipitation. Observational data from the Atmospheric Radiation Measurement (ARM) permanent field observational sites are augmented with satellite observations of precipitation and temperature as an observational baseline. A robust relationship across observational datasets between column water vapor (CWV) and precipitation, in which conditionally averaged precipitation exhibits a sharp pickup at some critical CWV value, provides a useful convective onset diagnostic for climate model comparison. While a few models reproduce an appropriate precipitation pickup, most models begin their pickup at too low CWV and the increase in precipitation with increasing CWV is too weak. Convective transition statistics compiled in column relative humidity (CRH) partially compensate for model temperature biases—although imperfectly since the temperature dependence is more complex than that of column saturation. Significant errors remain in individual models and weak pickups are generally not improved. The conditional-average precipitation as a function of CRH can be decomposed into the product of the probability of raining and mean precipitation during raining times (conditional intensity). The pickup behavior is primarily dependent on the probability of raining near the transition and on the conditional intensity at higher CRH. Most models roughly capture the CRH dependence of these two factors. However, compensating biases often occur: model conditional intensity that is too low at a given CRH is compensated in part by excessive probability of precipitation.
Abstract
The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time (τE ), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τE . In CMIP5 and CMIP6, the modeled τE was far shorter than the observation-based estimates. The potential reasons for the biased τE could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τE became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.
Abstract
The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time (τE ), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τE . In CMIP5 and CMIP6, the modeled τE was far shorter than the observation-based estimates. The potential reasons for the biased τE could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τE became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.
Abstract
Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2 increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections.
Abstract
Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2 increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections.
Abstract
Precipitation sustains life and supports human activities, making its prediction one of the most societally relevant challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipitation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation; 2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipitation; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases for informing model development.
Abstract
Precipitation sustains life and supports human activities, making its prediction one of the most societally relevant challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipitation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation; 2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipitation; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases for informing model development.