Browse

You are looking at 11 - 12 of 12 items for :

  • Oceanic Flow–Topography Interactions x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Kristin L. Zeiden, Daniel L. Rudnick, and Jennifer A. MacKinnon

Abstract

In this study, a 2-yr time series of velocity profiles to 1000 m from meridional glider surveys is used to characterize the wake in the lee of a large island in the western tropical North Pacific Ocean, Palau. Surveys were completed along sections to the east and west of the island to capture both upstream and downstream conditions. Objectively mapped in time and space, mean sections of velocity show the incident westward North Equatorial Current accelerating around the island of Palau, increasing from 0.1 to 0.2 m s−1 at the surface. Downstream of the island, elevated velocity variability and return flow in the lee are indicative of boundary layer separation. Isolating for periods of depth-average westward flow reveals a length scale in the wake that reflects local details of the topography. Eastward flow is shown to produce an asymmetric wake. Depth-average velocity time series indicate that energetic events (on time scales from weeks to months) are prevalent. These events are associated with mean vorticity values in the wake up to 0.3f near the surface and with instantaneous values that can exceed f (the local Coriolis frequency) during periods of sustained, anomalously strong westward flow. Thus, ageostrophic effects become important to first order.

Full access
Jody M. Klymak

Abstract

Drag and turbulence in steady stratified flows over “abyssal hills” have been parameterized using linear theory and rates of energy cascade due to wave–wave interactions. Linear theory has no drag or energy loss due to large-scale bathymetry because waves with intrinsic frequency less than the Coriolis frequency are evanescent. Numerical work has tested the theory by high passing the topography and estimating the radiation and turbulence. Adding larger-scale bathymetry that would generate evanescent internal waves generates nonlinear and turbulent flow, driving a dissipation approximately twice that of the radiating waves for the topographic spectrum chosen. This drag is linear in the forcing velocity, in contrast to atmospheric parameterizations that have quadratic drag. Simulations containing both small- and large-scale bathymetry have more dissipation than just adding the large- and small-scale dissipations together, so the scales couple. The large-scale turbulence is localized, generally in the lee of large obstacles. Medium-scale regional models partially resolve the “nonpropagating” wavenumbers, leading to the question of whether they need the large-scale energy loss to be parameterized. Varying the resolution of the simulations indicates that if the ratio of gridcell height to width is less than the root-mean-square topographic slope, then the dissipation is overestimated in coarse models (by up to 25%); conversely, it can be underestimated by up to a factor of 2 if the ratio is greater. Most regional simulations are likely in the second regime and should have extra drag added to represent the large-scale bathymetry, and the deficit is at least as large as that parameterized for abyssal hills.

Full access