Browse

You are looking at 11 - 17 of 17 items for :

  • U.S. CLIVAR Drought x
  • Refine by Access: All Content x
Clear All
Caio A. S. Coelho
and
Lisa Goddard

Abstract

El Niño brings widespread drought (i.e., precipitation deficit) to the tropics. Stronger or more frequent El Niño events in the future and/or their intersection with local changes in the mean climate toward a future with reduced precipitation would exacerbate drought risk in highly vulnerable tropical areas. Projected changes in El Niño characteristics and associated teleconnections are investigated between the twentieth and twenty-first centuries. For climate change models that reproduce realistic oceanic variability of the El Niño–Southern Oscillation (ENSO) phenomenon, results suggest no robust changes in the strength or frequency of El Niño events. These models exhibit realistic patterns, magnitude, and spatial extent of El Niño–induced drought patterns in the twentieth century, and the teleconnections are not projected to change in the twenty-first century, although a possible slight reduction in the spatial extent of droughts is indicated over the tropics as a whole. All model groups investigated show similar changes in mean precipitation for the end of the twenty-first century, with increased precipitation projected between 10°S and 10°N, independent of the ability of the models to replicate ENSO variability. These results suggest separability between climate change and ENSO-like climate variability in the tropics. As El Niño–induced precipitation drought patterns are not projected to change, the observed twentieth-century variability is used in combination with model-projected changes in mean precipitation for assessing year-to-year drought risk in the twenty-first century. Results suggest more locally consistent changes in regional drought risk among models with good fidelity in reproducing ENSO variability.

Full access
Kingtse C. Mo
,
Jae-Kyung E. Schemm
, and
Soo-Hyun Yoo

Abstract

Composites based on observations and model outputs from the Climate Variability and Predictability (CLIVAR) drought experiments were used to examine the impact of El Niño–Southern Oscillation (ENSO) and the Atlantic multidecadal oscillation (AMO) on drought over the United States. Because drought implies persistent dryness, the 6-month standardized precipitation index, standardized runoff index, and soil moisture anomalies are used to represent drought. The experiments were performed by forcing an AGCM with prescribed sea surface temperature anomalies (SSTAs) superimposed on the monthly mean SST climatology. Four model outputs from the NCEP Global Forecast System (GFS), NASA’s Seasonal-to-Interannual Prediction Project, version 1 (NSIPP1), GFDL’s global atmospheric model, version 2.1 (AM2.1), and the Lamont-Doherty Earth Observatory (LDEO)/NCAR Community Climate System Model, version 3 (CCM3) were analyzed in this study. Each run lasts from 36 to 51 yr.

The impact of ENSO on drought over the United States is concentrated over the Southwest, the Great Plains, and the lower Colorado River basin, with cold (warm) ENSO events favoring drought (wet spells). Over the East Coast and the Southeast, the impact of ENSO is small because the precipitation responses to ENSO are opposite in sign for winter and summer. For these areas, a prolonged ENSO does not always favor either drought or wet spells.

The direct influence of the AMO on drought is small. The major influence of the AMO is to modulate the impact of ENSO on drought. The influence is large when the SSTAs in the tropical Pacific and in the North Atlantic are opposite in phase. A cold (warm) event in a positive (negative) AMO phase amplifies the impact of the cold (warm) ENSO on drought. The ENSO influence on drought is much weaker when the SSTAs in the tropical Pacific and in the North Atlantic are in phase.

Full access
Bradfield Lyon

Abstract

Observations of daily maximum temperature (Tx) and monthly precipitation and their counterpart fields from three coupled models from the Coupled Model Intercomparison Project Phase 3 (CMIP3) archive have been used for exploratory research into the behavior of heat waves, drought, and their joint occurrence across the southern Africa subcontinent. The focus is on seasonal drought and heat waves during austral summer [December–February (DJF)] for land areas south of 15°S. Observational results (Tx available only for South Africa) are compared with those based on CMIP3 twentieth-century climate runs for a common analysis period of 1961–2000 while climate projections for the twenty-first century are also considered using the Special Report on Emissions Scenarios (SRES) A1B forcing scenario. Heat waves were defined when daily Tx values exceeded the 90th percentile for at least 3 consecutive days, while drought was identified via a standardized index of seasonal precipitation. When assessed over the entire study domain the unconditional probability of a heat wave, and its conditional probability given drought conditions, were similar in the models and (for a smaller domain) observations. The models exhibited less ability in reproducing the observed conditional probability of a heat wave given El Niño conditions. This appears to be related to a comparatively weak seasonal precipitation teleconnection pattern into southern Africa in the models during El Niño when drought conditions often develop. The heat wave–drought relationship did not substantially change in climate projections when computing anomalies from future climate means. However, relative to a 1981–2000 base period, the probability of a heat wave increases by over 3.5 times relative to the current climate. Projections across the three models suggest a future drying trend during DJF although this was found to be a model-dependent result, consistent with other studies. However, a decreasing trend in the evaporative fraction was identified across models, indicating that evaluation of future drought conditions needs to take into account both the supply (precipitation) and demand (evaporation) side of the surface water balance.

Full access
M. Biasutti
,
A. H. Sobel
, and
Suzana J. Camargo

Abstract

Projections for twenty-first-century changes in summertime Sahel precipitation differ greatly across models in the third Coupled Model Intercomparison Project (CMIP3) dataset and cannot be explained solely in terms of discrepancies in the projected anomalies in global SST.

This study shows that an index describing the low-level circulation in the North Atlantic–African region, namely, the strength of the low-level Saharan low, correlates with Sahel rainfall in all models and at the time scales of both interannual and interdecadal natural variability and of the forced centennial trend.

An analysis of Sahel interannual variability provides evidence that variations in the Sahara low can be a cause, not just a consequence, of variations in Sahel rainfall and suggests that a better understanding of the sources of model discrepancy in Sahel rainfall predictions might be gained from an analysis of the mechanisms influencing changes in the Sahara low.

Full access
Randal D. Koster
,
Hailan Wang
,
Siegfried D. Schubert
,
Max J. Suarez
, and
Sarith Mahanama

Abstract

The U.S. Climate Variability and Predictability (U.S. CLIVAR) Drought Working Group (DWG) recently performed a series of experiments in which a number of AGCMs were forced with different leading patterns of global SST variability. These experiments provide a unique opportunity to examine how different SST regimes affect temperature over the continental United States. Herein, the focus is on a particular aspect of June–August (JJA) near-surface air temperature: the temperature during relatively dry years for a given SST regime. For most of the models participating in the DWG experiments, a cold Pacific produces greater warming in the central United States during relatively dry years than a warm Pacific does for the following two separate reasons: (i) the cold Pacific leads on average, across all years, to drier conditions, and (ii) the particular evaporation regime induced by the cold Pacific enhances the impact of evaporation feedback on temperature, that is, the sensitivity of temperature to within-climate variations in moisture availability. These results are supported, to a large extent, by the observational record.

Full access
Scott J. Weaver
,
Siegfried Schubert
, and
Hailan Wang

Abstract

Sea surface temperature (SST) linkages to central U.S. low-level circulation and precipitation variability are investigated from the perspective of the Great Plains low-level jet (GPLLJ) and recurring modes of SST variability. The observed and simulated links are first examined via GPLLJ index regressions to precipitation, SST, and large-scale circulation fields in the NCEP–NCAR and North American Regional Reanalysis (NARR) reanalyses, and NASA’s Seasonal-to-Interannual Prediction Project (NSIPP1) and Community Climate Model, version 3 (CCM3) ensemble mean Atmospheric Model Intercomparison Project (AMIP) simulations for the 1949–2002 (1979–2002 for NARR) period. Characteristics of the low-level circulation and its related precipitation are further examined in the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group idealized climate model simulations (NSIPP1 and CCM3) forced with varying polarities of recurring modes of SST variability.

It is found that the observed and simulated correlations of the GPLLJ index to Atlantic and Pacific SST, large-scale atmospheric circulation, and Great Plains precipitation variability for 1949–2002 are robust during the July–September (JAS) season and show connections to a distinct global-scale SST variability pattern, one similar to that used in forcing the NSIPP1 and CCM3 idealized simulations, and a subtropical Atlantic-based sea level pressure (SLP) anomaly with a maximum over the Gulf of Mexico. The idealized simulations demonstrate that a warm Pacific and/or a cold Atlantic are influential over regional hydroclimate features including the monthly preference for maximum GPLLJ and precipitation in the seasonal cycle. Furthermore, it appears that the regional expression of globally derived SST variability is important for generating an anomalous atmospheric low-level response of consequence to the GPLLJ, especially when the SST anomaly is positioned over a regional maximum in climatological SST, and in this case the Western Hemisphere warm pool.

Full access
Siegfried Schubert
,
David Gutzler
,
Hailan Wang
,
Aiguo Dai
,
Tom Delworth
,
Clara Deser
,
Kirsten Findell
,
Rong Fu
,
Wayne Higgins
,
Martin Hoerling
,
Ben Kirtman
,
Randal Koster
,
Arun Kumar
,
David Legler
,
Dennis Lettenmaier
,
Bradfield Lyon
,
Victor Magana
,
Kingtse Mo
,
Sumant Nigam
,
Philip Pegion
,
Adam Phillips
,
Roger Pulwarty
,
David Rind
,
Alfredo Ruiz-Barradas
,
Jae Schemm
,
Richard Seager
,
Ronald Stewart
,
Max Suarez
,
Jozef Syktus
,
Mingfang Ting
,
Chunzai Wang
,
Scott Weaver
, and
Ning Zeng

Abstract

The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Niño–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern.

One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the United States tends to occur when the two oceans have anomalies of opposite signs. Further highlights of the response over the United States to the Pacific forcing include precipitation signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. The response to the positive SST trend forcing pattern is an overall surface warming over the world’s land areas, with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all of the models.

It is hoped that these early results, as well as those reported in the other contributions to this special issue on drought, will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

Full access