Browse

You are looking at 11 - 20 of 25 items for :

  • Indian Ocean Climate x
  • Refine by Access: All Content x
Clear All
Tommy G. Jensen
Full access
Bohua Huang
and
J. Shukla

Abstract

A series of experiments are conducted using a coupled ocean–atmosphere general circulation model in regional coupled mode, which permits active air–sea interaction only within the Indian Ocean to the north of 30°S, with sea surface temperatures (SSTs) prescribed over the rest of the world oceans. In this paper, an ensemble of nine simulations has been analyzed with the observed SST anomalies for 1950–98 prescribed over the uncoupled region. The purpose of this study is to determine the major patterns of interannual variability in the tropical Indian Ocean that could be related to the global low-frequency fluctuations and to understand the physical links between the remote forcing and the regional coupled variations.

The ensemble coupled simulations with prescribed SST outside the Indian Ocean are able to reproduce a considerable amount of observed variability in the tropical Indian Ocean during 1950–98. The first EOF modes of the simulated upper-ocean heat content and SST anomalies show structures that are quite consistent with those from the historical upper oceanic temperature and SST analyses. The dominant pattern of response is associated with an oceanic dynamical adjustment of the thermocline depth in the southwestern Indian Ocean. In general, a deepening of the thermocline in the southwest is usually accompanied by the enhanced upwelling and thermocline shoaling centered near the Sumatra coast. Further analysis shows that the leading external forcing is from the El Niño–Southern Oscillation (ENSO), which induces an anomalous fluctuation of the atmospheric anticyclones on both sides of the equator over the Indian Ocean, starting from the evolving stage of an El Niño event in boreal summer. Apart from weakening the Indian monsoon, the surface equatorial easterly anomalies associated with this circulation pattern first induce equatorial and coastal upwelling anomalies near the Sumatra coast from summer to fall, which enhance the equatorial zonal SST gradient and stimulate intense air–sea feedback in the equatorial ocean. Moreover, the persistent anticyclonic wind curl over the southern tropical Indian Ocean, reinforced by the equatorial air–sea coupling, forces substantial thermocline change centered at the thermocline ridge in the southwestern Indian Ocean for seasons. The significant thermocline change has profound and long-lasting influences on the SST fluctuations in the Indian Ocean.

It should be noted that the ENSO forcing is not the only way that this kind of basinwide Indian Ocean fluctuations can be generated. As will be shown in the second part of this study, similar low-frequency fluctuations can also be generated by processes within the Indian and western Pacific region without ENSO influence. The unique feature of the ENSO influence is that, because of the high persistence of the atmospheric remote forcing from boreal summer to winter, the life span of the thermocline anomalies in the southwestern Indian Ocean is generally longer than that generated by regional coupled processes.

Full access
Bohua Huang
and
J. Shukla

Abstract

To understand the mechanisms of the interannual variability in the tropical Indian Ocean, two long-term simulations are conducted using a coupled ocean–atmosphere GCM—one with active air–sea coupling over the global ocean and the other with regional coupling restricted within the Indian Ocean to the north of 30°S while the climatological monthly sea surface temperatures (SSTs) are prescribed in the uncoupled oceans to drive the atmospheric circulation. The major spatial patterns of the observed upper-ocean heat content and SST anomalies can be reproduced realistically by both simulations, suggesting that they are determined by intrinsic coupled processes within the Indian Ocean.

In both simulations, the interannual variability in the Indian Ocean is dominated by a tropical mode and a subtropical mode. The tropical mode is characterized by a coupled feedback among thermocline depth, zonal SST gradient, and wind anomalies over the equatorial and southern tropical Indian Ocean, which is strongest in boreal fall and winter. The tropical mode simulated by the global coupled model reproduces the main observational features, including a seasonal connection to the model El Niño–Southern Oscillation (ENSO). The ENSO influence, however, is weaker than that in a set of ensemble simulations described in Part I of this study, where the observed SST anomalies for 1950–98 are prescribed outside the Indian Ocean. Combining with the results from Part I of this study, it is concluded that ENSO can modulate the temporal variability of the tropical mode through atmospheric teleconnection. Its influence depends on the ENSO strength and duration. The stronger and more persistent El Niño events in the observations extend the life span of the anomalous events in the tropical Indian Ocean significantly. In the regional coupled simulation, the tropical mode is still active, but its dominant period is shifted away from that of ENSO. In the absence of ENSO forcing, the tropical mode is mainly stimulated by an anomalous atmospheric direct thermal cell forced by the fluctuations of the northwestern Pacific monsoon.

The subtropical mode is characterized by an east–west dipole pattern of the SST anomalies in the southern subtropical Indian Ocean, which is strongest in austral fall. The SST anomalies are initially forced by surface heat flux anomalies caused by the anomalous southeast trade wind in the subtropical ocean during austral summer. The trade wind anomalies are in turn associated with extratropical variations from the southern annular mode. A thermodynamic air–sea feedback strengthens these subtropical anomalies quickly in austral fall and extends their remnants into the tropical ocean in austral winter. In the simulations, this subtropical variability is independent of ENSO.

Full access
Peter R. Oke
and
Andreas Schiller

Abstract

A series of observing system simulation experiments (OSSEs) are performed for the tropical Indian Ocean (±15° from the equator) using a simple analysis system. The analysis system projects an array of observations onto the dominant empirical orthogonal functions (EOFs) derived from an intermediate-resolution (2° × 0.5°) ocean circulation model. This system produces maps of the depth of the 20°C isotherm (D20), representing interannual variability, and the high-pass-filtered mixed layer depth (MLD), representing intraseasonal variability. The OSSEs are designed to assess the suitability of the proposed Indian Ocean surface mooring array for resolving intraseasonal to interannual variability. While the proposed array does a reasonable job of resolving the interannual time scales, it may not adequately resolve the intraseasonal time scales. A procedure is developed to rank the importance of observation locations by determining the observation array that best projects onto the EOFs used in the analysis system. OSSEs using an optimal array clearly outperform the OSSEs using the proposed array. The configuration of the optimal array is sensitive to the number of EOFs considered. The optimal array is also different for D20 and MLD, and depends on whether fixed observations are included that represent an idealized Argo array. Therefore, a relative frequency map of observation locations identified in 24 different OSSEs is compiled and a single, albeit less optimal, array that is referred to as a consolidated array is objectively determined. The consolidated array reflects the general features of the individual optimal arrays derived from all OSSEs. It is found that, in general, observations south of 8°S and off of the Indonesian coast are most important for resolving the interannual variability, while observations a few degrees south of the equator, and west of 75°E, and a few degrees north of the equator, and east of 75°E, are important for resolving the intraseasonal variability. In a series of OSSEs, the consolidated array is shown to outperform the proposed array for all configurations of the analysis system for both D20 and MLD.

Full access
R. J. Murray
,
Nathaniel L. Bindoff
, and
C. J. C. Reason

Abstract

A near-global ocean model with resolution enhanced in the southern Indian Ocean has been spun up to seasonal equilibrium and then driven by NCEP–NCAR reanalysis 1 monthly mean forcings and Hadley SSTs over the period 1948–2002. The aim was to simulate changes in the subsurface properties observed in hydrographic surveys at 32°S in the Indian Ocean in 1965, 1987, and 2002. These surveys showed a zonally averaged cooling on isopycnals of 0.5° and 0.3°C in mode and intermediate waters between 1965 and 1987 and a warming of the mode water coupled with a continued cooling of the intermediate water between 1987 and 2002. The major changes in isopycnal depth and temperature modeled in this study were confined to the mode water and were qualitatively similar to those observed but concentrated in a lower density class and in the eastern half of the section. The dominant changes here were multidecadal, with maximum temperatures on the σθ = 26.7 kg m−3 isopycnal being reached in 1968 and minimum temperatures in 1990. The simulations showed a propagation of interannual anomalies toward the section from a region of deep late winter mixed layers in the southeast Indian Ocean within a period of several years. Surface temperatures in this region were lowest in the 1960s and highest in the late 1980s. Temperatures on isopycnals showed the opposite variation, consistent with SST having the controlling effect on mixed layer density and depth. Isopycnal depths within the mode water were strongly correlated with temperature, implying a redistribution of mode water density classes, the greatest volume of mode water being produced in a higher density class (σθ = 26.8–27.0 kg m–3) during the period of cooler surface forcing in the 1960s and 1970s than during the warmer period following (σθ = 26.6–26.8 kg m–3).

Full access
J. C. Hermes
,
C. J. C. Reason
, and
J. R. E. Lutjeharms

Abstract

An eddy-permitting, regional ocean model has been used to examine the variability in the source regions of the Agulhas Current on a range of time scales. These source regions are the East Madagascar Current, the flow through the Mozambique Channel, and the recirculation of the southwest Indian Ocean. The effect of variability in these source regions on the interocean leakage at the Agulhas retroflection south of Africa has been quantified using a retroflection index.

On the annual mean, the recirculation in the southwest Indian Ocean subgyre is by far the dominant contribution to the volume transport of the Agulhas Current in the model. On average the recirculation also contributes the largest amount of heat, although the difference between the three sources is not as great as that seen in the volume flux since the water in the Mozambique Channel may be warmer than in the recirculation. Local winds seem to be the dominant forcing mechanism of variability in this recirculation, although it is also partly in phase with the zonally averaged wind stress curl over the subtropical Indian Ocean. A strong relationship was found between the transport of the recirculation and that of the Agulhas Current, particularly on interannual time scales.

Consistent with observations, the model flow through the Mozambique Channel is dominated by eddies, with a strong annual cycle, lagging the South Equatorial Current by 1 month and a weaker semiannual cycle. The southern limb of the East Madagascar Current also shows an annual and semiannual variation in transport at 20°S, partly in phase with the local winds. South of about 24°S, the East Madagascar Current breaks up into eddies.

An investigation into the sensitivity of the flows in the source regions and in the retroflection index to a 2° southward shift in the mean winds was conducted. In the model run with the shifted winds, the transport strengthened in the recirculation subgyre together with increased mesoscale activity as well as reduced leakage into the southeast Atlantic Ocean when the winds were shifted south by 2°.

Full access
Joaquim Ballabrera-Poy
,
Eric Hackert
,
Raghu Murtugudde
, and
Antonio J. Busalacchi

Abstract

In this paper, a series of observing system simulation experiments (OSSEs) are used to study the design of a proposed array of instrumented moorings in the Indian Ocean (IO) outlined by the IO panel of the Climate Variability and Predictability (CLIVAR) Project. Fields of the Ocean Topography Experiment (TOPEX)/Poseidon (T/P) and Jason sea surface height (SSH) and sea surface temperature (SST) are subsampled to simulate dynamic height and SST data from the proposed array. Two different reduced-order versions of the Kalman filter are used to reconstruct the original fields from the simulated observations with the objective of determining the optimal deployment of moored platforms and to address the issue of redundancy and array simplification. The experiments indicate that, in terms of the reconstruction of SSH and SST, the location of the subjectively proposed array compareS favorably with the optimally defined one. The only significant difference between the proposed IO array and the optimal array is the lack of justification for increasing the latitudinal resolution near the equator (i.e., moorings 1.5°S and 1.5°N). An analysis of the redundancy also identifies the equatorial region as the one with the largest amount of redundant information. Thus, in the context of these fields, these results may help define the prioritization of its deployment or redefine the array to extend its latitudinal extent while maintaining the same amount of stations.

Full access
Gabriel A. Vecchi
and
Matthew J. Harrison

Abstract

An integrated in situ Indian Ocean observing system (IndOOS) is simulated using a high-resolution ocean general circulation model (OGCM) with daily mean forcing, including an estimate of subdaily oceanic variability derived from observations. The inclusion of subdaily noise is fundamental to the results; in the mixed layer it is parameterized as Gaussian noise with an rms of 0.1°C; below the mixed layer a Gaussian interface displacement with an rms of 7 m is used. The focus of this assessment is on the ability of an IndOOS—comprising a 3° × 3° Argo profiling float array, a series of frequently repeated XBT lines, and an array of moored buoys—to observe the interannual and subseasonal variability of subsurface Indian Ocean temperature. The simulated IndOOS captures much of the OGCM interannual subsurface temperature variability.

A fully deployed Argo array with 10-day sampling interval is able to capture a significant part of the Indian Ocean interannual temperature variability; a 5-day sampling interval degrades its ability to capture variability. The proposed moored buoy array and frequently repeated XBT lines provide complementary information in key regions, particularly the Java/Sumatra and Somali upwelling and equatorial regions. Since the subdaily noise is of the same order as the subseasonal signal and since much of the variability is submonthly, a 5-day sampling interval does not drastically enhance the ability of Argo to capture the OGCM subseasonal variability. However, as sampling intervals are decreased, there is enhanced divergence of the Argo floats, diminished ability to quality control data, and a decreased lifetime of the floats; these factors argue against attempting to resolve subseasonal variability with Argo by shortening the sampling interval. A moored array is essential to capturing the subseasonal and near-equatorial variability in the model, and the proposed moored buoy locations span the region of strong subseasonal variability. On the whole, the proposed IndOOS significantly enhances the ability to capture both interannual and subseasonal variability in the Indian Ocean.

Full access
Vinu K. Valsala
and
Motoyoshi Ikeda

Abstract

The 3D pathways of the Indonesian Throughflow (ITF) in the Indian Ocean are identified using an OGCM, with a combined set of tools: 1) Lagrangian particle trajectories, 2) passive tracers, and 3) active tracers (temperature and salinity). Each of these tools has its own advantages and limitations to represent the watermass pathways. The Lagrangian particles, without horizontal and vertical mixing, suggest that at the entrance region the surface ITF subducts along the northwestern coast of Australia and then travels across the Indian Ocean along the thermocline depths. The subsurface ITF more directly departs westward and crosses the Indian Ocean. Using the passive tracers, which are mixed vertically under convection as well as horizontally due to diffusion, the ITF is shown to undergo vigorous mixing as soon as it enters the Indian Ocean and modifies its upper temperature–salinity (TS) characteristics. Thus, the surface and subsurface ITF watermasses lose their identities.

Upon reaching the western boundary, the ITF reroutes into three distinct depth ranges, owing to the seasonal reversal of the Somali region: route 1—across the Indian Ocean just to the south of the equator (200–300 m); route 2—across the Indian Ocean to the north of the equator (100–200 m); and route 3—upwells in the Somali region and spreads all over the surface of the northern Indian Ocean. The seasonality of the Somali Current is crucial to spread the ITF along route 3 during the summer monsoon (April–October) and route 2 during the winter monsoon (November–March). The basinwide spreading is responsible for a long residence time of the ITF in the Indian Ocean to be at least 20 yr.

The effects of the ITF on the temperature and salinity are mainly accompanied with the major pathways. However, indirect effects are visible in a few spots; that is, the warm and saline feature is produced in the subsurface off the southwestern coast of Australia around 30°S caused by the eastward surface current, which is under the thermal wind relationship owing to the warm and fresh ITF component. This component also enhances vertical convection and warms the surface around 40°S. The Arabian Sea high salinity water is produced extensively with the effects of the Somali upwelling, which is originally strengthened by the fresh and warm ITF.

Full access
H. Annamalai
,
H. Okajima
, and
M. Watanabe

Abstract

Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs.

Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage.

The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.

Full access