Browse

You are looking at 11 - 12 of 12 items for :

  • Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) x
  • Refine by Access: All Content x
Clear All
Jeffrey D. Massey, W. James Steenburgh, Sebastian W. Hoch, and Jason C. Knievel

Abstract

Weather Research and Forecasting Model forecasts over the Great Salt Lake Desert erroneously underpredict nocturnal cooling over the sparsely vegetated silt loam soil area of Dugway Proving Ground in northern Utah, with a mean positive bias error in temperature at 2 m AGL of 3.4°C in the early morning [1200 UTC (0500 LST)]. Positive early-morning bias errors also exist in nearby sandy loam soil areas. These biases are related to the improper initialization of soil moisture and parameterization of soil thermal conductivity in silt loam and sandy loam soils. Forecasts of 2-m temperature can be improved by initializing with observed soil moisture and by replacing Johansen's 1975 parameterization of soil thermal conductivity in the Noah land surface model with that proposed by McCumber and Pielke in 1981 for silt loam and sandy loam soils. Case studies illustrate that this change can dramatically reduce nighttime warm biases in 2-m temperature over silt loam and sandy loam soils, with the greatest improvement during periods of low soil moisture. Predicted ground heat flux, soil thermal conductivity, near-surface radiative fluxes, and low-level thermal profiles also more closely match observations. Similar results are anticipated in other dryland regions with analogous soil types, sparse vegetation, and low soil moisture.

Full access
Hailing Zhang, Zhaoxia Pu, and Xuebo Zhang

Abstract

The performance of an advanced research version of the Weather Research and Forecasting Model (WRF) in predicting near-surface atmospheric temperature and wind conditions under various terrain and weather regimes is examined. Verification of 2-m temperature and 10-m wind speed and direction against surface Mesonet observations is conducted. Three individual events under strong synoptic forcings (i.e., a frontal system, a low-level jet, and a persistent inversion) are first evaluated. It is found that the WRF model is able to reproduce these weather phenomena reasonably well. Forecasts of near-surface variables in flat terrain generally agree well with observations, but errors also occur, depending on the predictability of the lower-atmospheric boundary layer. In complex terrain, forecasts not only suffer from the model's inability to reproduce accurate atmospheric conditions in the lower atmosphere but also struggle with representative issues due to mismatches between the model and the actual terrain. In addition, surface forecasts at finer resolutions do not always outperform those at coarser resolutions. Increasing the vertical resolution may not help predict the near-surface variables, although it does improve the forecasts of the structure of mesoscale weather phenomena. A statistical analysis is also performed for 120 forecasts during a 1-month period to further investigate forecast error characteristics in complex terrain. Results illustrate that forecast errors in near-surface variables depend strongly on the diurnal variation in surface conditions, especially when synoptic forcing is weak. Under strong synoptic forcing, the diurnal patterns in the errors break down, while the flow-dependent errors are clearly shown.

Full access