Browse

You are looking at 11 - 20 of 46 items for :

  • Plains Elevated Convection At Night (PECAN) x
  • Refine by Access: All Content x
Clear All
Shushi Zhang
,
David B. Parsons
, and
Yuan Wang

Abstract

This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.

Free access
Tammy M. Weckwerth
,
John Hanesiak
,
James W. Wilson
,
Stanley B. Trier
,
Samuel K. Degelia
,
William A. Gallus Jr.
,
Rita D. Roberts
, and
Xuguang Wang

Abstract

Nocturnal convection initiation (NCI) is more difficult to anticipate and forecast than daytime convection initiation (CI). A major component of the Plains Elevated Convection at Night (PECAN) field campaign in the U.S. Great Plains was to intensively sample NCI and its near environment. In this article, we summarize NCI types observed during PECAN: 1 June–16 July 2015. These NCI types, classified using PECAN radar composites, are associated with 1) frontal overrunning, 2) the low-level jet (LLJ), 3) a preexisting mesoscale convective system (MCS), 4) a bore or density current, and 5) a nocturnal atmosphere lacking a clearly observed forcing mechanism (pristine). An example and description of each of these different types of PECAN NCI events are presented. The University of Oklahoma real-time 4-km Weather Research and Forecasting (WRF) Model ensemble forecast runs illustrate that the above categories having larger-scale organization (e.g., NCI associated with frontal overrunning and NCI near a preexisting MCS) were better forecasted than pristine. Based on current knowledge and data from PECAN, conceptual models summarizing key environmental features are presented and physical processes underlying the development of each of these different types of NCI events are discussed.

Full access
Jonathan E. Thielen
and
William A. Gallus Jr.

Abstract

Nocturnal mesoscale convective systems (MCSs) are important phenomena because of their contributions to warm-season precipitation and association with severe hazards. Past studies have shown that their morphology remains poorly forecast in current convection-allowing models operating at 3–4-km horizontal grid spacing. A total of 10 MCS cases occurring in weakly forced environments were simulated using the Weather Research and Forecasting (WRF) Model at 3- and 1-km horizontal grid spacings to investigate the impact of increased resolution on forecasts of convective morphology and its evolution. These simulations were conducted using four microphysics schemes to account for additional sensitivities to the microphysical parameterization. The observed and corresponding simulated systems were manually classified into detailed cellular and linear modes, and the overall morphology depiction and the forecast accuracy of each model configuration were evaluated. In agreement with past studies, WRF was found to underpredict the occurrence of linear modes and overpredict cellular modes at 3-km horizontal grid spacing with all microphysics schemes tested. When grid spacing was reduced to 1 km, the proportion of linear systems increased. However, the increase was insufficient to match observations throughout the evolution of the systems, and the accuracy scores showed no statistically significant improvement. This suggests that the additional linear modes may have occurred in the wrong subtypes, wrong systems, and/or at the wrong times. Accuracy scores were also shown to decrease with forecast length, with the primary decrease in score generally occurring during upscale growth in the early nocturnal period.

Full access
Tammy M. Weckwerth
and
Ulrike Romatschke

Abstract

The overarching goal of the Plains Elevated Convection At Night (PECAN) field campaign was to improve understanding of the processes contributing to the nocturnal precipitation maximum in the U.S. Great Plains. This study presents the precipitation pattern surrounding PECAN and addresses the origin, timing, duration, and potential causes contributing to that pattern. It is shown that the precipitation occurs most frequently at night, as expected. The maximum in the precipitation pattern occurred in the northeastern portion of the PECAN radar domain. The source of the rainfall was attributed to mountain-initiated precipitation, plains-initiated precipitation, precipitation advecting over the border of the radar domain, and episodes in which different initiation categories merged together. Through the combination of mountain-initiated, border, and merged episodes, 70% of the Great Plains precipitation was caused by episodes that formed outside of the PECAN domain and propagated into the region. The remaining 30% of the precipitation was attributed to plains-initiated storms. The mountain-initiated storms formed primarily in the afternoon and typically dissipated near the mountains. For those that survived, they propagated eastward, grew upscale, and contributed 27% of the precipitation in the plains. The plains-initiated precipitation fell mostly during the afternoon but also contributed to overnight rainfall and those locally triggered systems tended to be relatively smaller and shorter lived. For the top 10% rain-producing events, composite reanalysis fields showed that synoptic-scale features influenced the precipitation pattern and timing: an approaching trough established southwesterly moist flow throughout the region and a nocturnal low-level jet transported moisture to its terminus in the northeast corner of the PECAN domain.

Free access
Samuel K. Degelia
,
Xuguang Wang
, and
David J. Stensrud

Abstract

Numerical weather prediction models often fail to correctly forecast convection initiation (CI) at night. To improve our understanding of such events, researchers collected a unique dataset of thermodynamic and kinematic remote sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment. This study evaluates the impacts made to a nocturnal CI forecast on 26 June 2015 by assimilating a network of atmospheric emitted radiance interferometers (AERIs), Doppler lidars, radio wind profilers, high-frequency rawinsondes, and mobile surface observations using an advanced, ensemble-based data assimilation system. Relative to operational forecasts, assimilating the PECAN dataset improves the timing, location, and orientation of the CI event. Specifically, radio wind profilers and rawinsondes are shown to be the most impactful instrument by enhancing the moisture advection into the region of CI in the forecast. Assimilating thermodynamic profiles collected by the AERIs increases midlevel moisture and improves the ensemble probability of CI in the forecast. The impacts of assimilating the radio wind profilers, AERI retrievals, and rawinsondes remain large throughout forecasting the growth of the CI event into a mesoscale convective system. Assimilating Doppler lidar and surface data only slightly improves the CI forecast by enhancing the convergence along an outflow boundary that partially forces the nocturnal CI event. Our findings suggest that a mesoscale network of profiling and surface instruments has the potential to greatly improve short-term forecasts of nocturnal convection.

Full access
Stacey M. Hitchcock
,
Russ S. Schumacher
,
Gregory R. Herman
,
Michael C. Coniglio
,
Matthew D. Parker
, and
Conrad L. Ziegler

Abstract

During the Plains Elevated Convection at Night (PECAN) field campaign, 15 mesoscale convective system (MCS) environments were sampled by an array of instruments including radiosondes launched by three mobile sounding teams. Additional soundings were collected by fixed and mobile PECAN integrated sounding array (PISA) groups for a number of cases. Cluster analysis of observed vertical profiles established three primary preconvective categories: 1) those with an elevated maximum in equivalent potential temperature below a layer of potential instability; 2) those that maintain a daytime-like planetary boundary layer (PBL) and nearly potentially neutral low levels, sometimes even well after sunset despite the existence of a southerly low-level wind maximum; and 3) those that are potentially neutral at low levels, but have very weak or no southerly low-level winds. Profiles of equivalent potential temperature in elevated instability cases tend to evolve rapidly in time, while cases in the potentially neutral categories do not. Analysis of composite Rapid Refresh (RAP) environments indicate greater moisture content and moisture advection in an elevated layer in the elevated instability cases than in their potentially neutral counterparts. Postconvective soundings demonstrate significantly more variability, but cold pools were observed in nearly every PECAN MCS case. Following convection, perturbations range between −1.9 and −9.1 K over depths between 150 m and 4.35 km, but stronger, deeper stable layers lead to structures where the largest cold pool temperature perturbation is observed above the surface.

Full access

Bore-ing into Nocturnal Convection

Kevin R. Haghi
,
Bart Geerts
,
Hristo G. Chipilski
,
Aaron Johnson
,
Samuel Degelia
,
David Imy
,
David B. Parsons
,
Rebecca D. Adams-Selin
,
David D. Turner
, and
Xuguang Wang

Abstract

There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Full access
Elizabeth N. Smith
,
Joshua G. Gebauer
,
Petra M. Klein
,
Evgeni Fedorovich
, and
Jeremy A. Gibbs

Abstract

During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerly advection becomes significant. Buoyancy-related mechanisms are proposed to explain NLLJ heterogeneity and down-slope motion. Spatial and temporal heterogeneity of the NLLJ is suggested as a source of the often observed and simulated updrafts during PECAN cases and as a possible mechanism for nocturnal convection initiation. The spatial and temporal characteristics of the NLLJ are interconnected and should not be treated independently.

Full access
Aaron Johnson
and
Xuguang Wang

Abstract

Four case studies from the Plains Elevated Convection at Night (PECAN) field experiment are used to investigate the impacts of horizontal and vertical resolution, and vertical mixing parameterization, on predictions of bore structure and upscale impacts of bores on their mesoscale environment. The reduction of environmental convective inhibition (CIN) created by the bore is particularly emphasized. Simulations are run with horizontal grid spacings ranging from 250 to 1000 m, as well as 50 m for one case study, different vertical level configurations, and different closure models for the vertical turbulent mixing at 250-m horizontal resolution. The 11 July case study was evaluated in greatest detail because it was the best observed case and has been the focus of a previous study. For this case, it is found that 250-m grid spacing improves upon 1-km grid spacing, LES configuration provides further improvement, and enhanced low-level vertical resolution also provides further improvement in terms of qualitative agreement between simulated and observed bore structure. Reducing LES grid spacing further to 50 m provided very little additional advantage. Only the LES experiments properly resolved the upscale influence of reduced low-level CIN. Expanding on the 11 July case study, three other cases from PECAN with diverse observed bore structures were also evaluated. Similar to the 11 July case, enhancing the horizontal and vertical grid spacings, and using the LES closure model for vertical turbulent mixing, all contributed to improved simulations of both the bores themselves and the larger-scale modification of CIN to varying degrees on different cases.

Full access
David M. Loveless
,
Timothy J. Wagner
,
David D. Turner
,
Steven A. Ackerman
, and
Wayne F. Feltz

Abstract

Atmospheric bores have been shown to have a role in the initiation and maintenance of elevated convection. Previous observational studies of bores have been case studies of more notable events. However, this creates a selection bias toward extraordinary cases, while discussions of the differences between bores that favor convective initiation and maintenance and bores that do not are lacking from the literature. This study attempts to fill that gap by analyzing a high-temporal-resolution thermodynamic profile composite of eight bores observed by multiple platforms during the Plains Elevated Convection at Night (PECAN) campaign in order to assess the impact of bores on the environment. The time–height cross section of the potential temperature composite displays quasi-permanent parcel displacements up to 900 m with the bore passage. Low-level lifting is shown to weaken the capping inversion and reduce convective inhibition (CIN) and the level of free convection (LFC). Additionally, low-level water vapor increases by about 1 g kg−1 in the composite mean. By assessing variability across the eight cases, it is shown that increases in low-level water vapor result in increases to convective available potential energy (CAPE), while drying results in decreased CAPE. Most cases resulted in decreased CIN and LFC height with the bore passage, but only some cases resulted in increased CAPE. This suggests that bores will increase the potential for convective initiation, but future research should be directed toward better understanding cases that result in increased CAPE as those are the types of bores that will increase severity of convection.

Full access