Browse

You are looking at 11 - 20 of 20 items for :

  • Journal of Applied Meteorology and Climatology x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: All Content x
Clear All
Sarah D. Bang
and
Daniel J. Cecil

Abstract

Large hail is a primary contributor to damages and loss around the world, in both agriculture and infrastructure. The sensitivity of passive microwave radiometer measurements to scattering by hail led to the development of proxies for severe hail, most of which use brightness temperature thresholds from 37-GHz and higher-frequency microwave channels on board weather satellites in low-Earth orbit. Using 16+ years of data from the Tropical Rainfall Measuring Mission (TRMM; 36°S–36°N), we pair TRMM brightness temperature–derived precipitation features with surface hail reports in the United States to train a hail retrieval on passive microwave data from the 10-, 19-, 37-, and 85-GHz channels based on probability curves fit to the microwave data. We then apply this hail retrieval to features in the Global Precipitation Measurement (GPM) domain (from 69°S to 69°N) to develop a nearly global passive microwave–based climatology of hail. The extended domain of the GPM satellite into higher latitudes requires filtering out features that we believe are over icy and snowy surface regimes. We also normalize brightness temperature depression by tropopause height in an effort to account for differences in storm depth between the tropics and higher latitudes. Our results show the highest hail frequencies in the region of northern Argentina through Paraguay, Uruguay, and southern Brazil; the central United States; and a swath of Africa just south of the Sahel. Smaller hot spots include Pakistan, eastern India, and Bangladesh. A notable difference between these results and many prior satellite-based studies is that central Africa, while still active in our climatology, does not rival the aforementioned regions in retrieved hailstorm frequency.

Open access
Kenneth D. Leppert II
and
Daniel J. Cecil

Abstract

Global Precipitation Measurement (GPM) Microwave Imager (GMI) brightness temperatures (BTs) were simulated over a case of severe convection in Texas using ground-based S-band radar and the Atmospheric Radiative Transfer Simulator. The median particle diameter D o of a normalized gamma distribution was varied for different hydrometeor types under the constraint of fixed radar reflectivity to better understand how simulated GMI BTs respond to changing particle size distribution parameters. In addition, simulations were conducted to assess how low BTs may be expected to reach from realistic (although extreme) particle sizes or concentrations. Results indicate that increasing D o for cloud ice, graupel, and/or hail leads to warmer BTs (i.e., weaker scattering signature) at various frequencies. Channels at 166.0 and 183.31 ± 7 GHz are most sensitive to changing D o of cloud ice, channels at ≥89.0 GHz are most sensitive to changing D o of graupel, and at 18.7 and 36.5 GHz they show the greatest sensitivity to hail D o . Simulations contrasting BTs above high concentrations of small (0.5-cm diameter) and low concentrations of large (20-cm diameter) hailstones distributed evenly across a satellite pixel showed much greater scattering using the higher concentration of smaller hailstones with BTs as low as ~110, ~33, ~22, ~46, ~100, and ~106 K at 10.65, 18.7, 36.5, 89.0, 166.0, and 183.31 ± 7 GHz, respectively. These results suggest that number concentration is more important for scattering than particle size given a constant S-band radar reflectivity.

Full access
Paloma Borque
,
Kirstin J. Harnos
,
Stephen W. Nesbitt
, and
Greg M. McFarquhar

Abstract

Satellite retrieval algorithms and model microphysical parameterizations require guidance from observations to improve the representation of ice-phase microphysical quantities and processes. Here, a parameterization for ice-phase particle size distributions (PSDs) is developed using in situ measurements of cloud microphysical properties collected during the Global Precipitation Measurement (GPM) Cold-Season Precipitation Experiment (GCPEx). This parameterization takes advantage of the relation between the gamma-shape parameter μ and the mass-weighted mean diameter D m of the ice-phase PSD sampled during GCPEx. The retrieval of effective reflectivity Z e and ice water content (IWC) from the reconstructed PSD using the μD m relationship was tested with independent measurements of Z e and IWC and overall leads to a mean error of 8% in both variables. This represents an improvement when compared with errors using the Field et al. parameterization of 10% in IWC and 37% in Z e . Current radar precipitation retrieval algorithms from GPM assume that the PSD follows a gamma distribution with μ = 3. This assumption leads to a mean overestimation of 5% in the retrieved Z e , whereas applying the μD m relationship found here reduces this bias to an overestimation of less than 1%. Proper selection of the a and b coefficients in the mass–dimension relationship is also of crucial importance for retrievals. An inappropriate selection of a and b, even from values observed in previous studies in similar environments and cloud types, can lead to more than 100% bias in IWC and Z e for the ice-phase particles analyzed here.

Full access
Gail Skofronick-Jackson
,
Mark Kulie
,
Lisa Milani
,
Stephen J. Munchak
,
Norman B. Wood
, and
Vincenzo Levizzani

Abstract

Retrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.

Full access
W.-K. Tao
,
T. Iguchi
, and
S. Lang

Abstract

The Goddard convective–stratiform heating (CSH) algorithm has been used to retrieve latent heating (LH) associated with clouds and cloud systems in support of the Tropical Rainfall Measuring Mission and Global Precipitation Measurement (GPM) mission. The CSH algorithm requires the use of a cloud-resolving model to simulate LH profiles to build lookup tables (LUTs). However, the current LUTs in the CSH algorithm are not suitable for retrieving LH profiles at high latitudes or winter conditions that are needed for GPM. The NASA Unified-Weather Research and Forecasting (NU-WRF) Model is used to simulate three eastern continental U.S. (CONUS) synoptic winter and three western coastal/offshore events. The relationship between LH structures (or profiles) and other precipitation properties (radar reflectivity, freezing-level height, echo-top height, maximum dBZ height, vertical dBZ gradient, and surface precipitation rate) is examined, and a new classification system is adopted with varying ranges for each of these precipitation properties to create LUTs representing high latitude/winter conditions. The performance of the new LUTs is examined using a self-consistency check for one CONUS and one West Coast offshore event by comparing LH profiles retrieved from the LUTs using model-simulated precipitation properties with those originally simulated by the model. The results of the self-consistency check validate the new classification and LUTs. The new LUTs provide the foundation for high-latitude retrievals that can then be merged with those from the tropical CSH algorithm to retrieve LH profiles over the entire GPM domain using precipitation properties retrieved from the GPM combined algorithm.

Full access
Liang Liao
and
Robert Meneghini

Abstract

To overcome a deficiency in the standard Ku- and Ka-band dual-wavelength radar technique, a modified version of the method is introduced. The deficiency arises from ambiguities in the estimate of the mass-weighted diameter D m of the raindrop size distribution (DSD) derived from the differential frequency ratio (DFR), defined as the difference between the radar reflectivity factors (dB) at Ku and Ka band Z KuZ Ka. In particular, for DFR values less than zero, there are two possible solutions of D m , leading to ambiguities in the retrieved DSD parameters. It is shown that the double solutions to D m are effectively eliminated if the DFR is modified from Z KuZ Ka to Z KuγZ Ka (dB), where γ is a constant with a value less than 0.8. An optimal radar algorithm that uses the modified DFR for the retrieval of rain and D m profiles is described. The validity and accuracy of the algorithm are tested by applying it to radar profiles that are generated from measured DSD data. Comparisons of the rain rates and D m estimated from the modified DFR algorithm to the same hydrometeor quantities computed directly from the DSD spectra (or the truth) indicate that the modified DFR-based profiling retrievals perform fairly well and are superior in accuracy and robustness to retrievals using the standard DFR.

Full access
Daniel J. Cecil
and
Themis Chronis

Abstract

Coefficients are derived for computing the polarization-corrected temperature (PCT) for 10-, 19-, 37- and 89-GHz (and similar) frequencies, with applicability to satellites in the Global Precipitation Measurement mission constellation and their predecessors. PCTs for 10- and 19-GHz frequencies have been nonexistent or seldom used in the past; developing those is the main goal of this study. For 37 and 89 GHz, other formulations of PCT have already become well established. We consider those frequencies here in order to test whether the large sample sizes that are readily available now would point to different formulations of PCT. The purpose of the PCT is to reduce the effects of surface emissivity differences in a scene and draw attention to ice scattering signals related to precipitation. In particular, our intention is to develop a PCT formula that minimizes the differences between land and water surfaces, so that signatures resulting from deep convection are not easily confused with water surfaces. The new formulations of PCT for 10- and 19-GHz measurements hold promise for identifying and investigating intense convection. Four examples are shown from relevant cases. The PCT for each frequency is effective at drawing attention to the most intense convection, and removing ambiguous signals that are related to underlying land or water surfaces. For 37 and 89 GHz, the older formulations of PCT from the literature yield generally similar values as ours, with the differences mainly being a few kelvins over oceans. An optimal formulation of PCT can depend on location and season; results are presented here separated by latitude and month.

Full access
Kamil Mroz
,
Alessandro Battaglia
,
Timothy J. Lang
,
Simone Tanelli
, and
Gian Franco Sacco

Abstract

A statistical analysis of simultaneous observations of more than 800 hailstorms over the continental United States performed by the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) and the ground-based Next Generation Weather Radar (NEXRAD) network has been carried out. Several distinctive features of DPR measurements of hail-bearing columns, potentially exploitable by hydrometeor classification algorithms, are identified. In particular, the height and the strength of the Ka-band reflectivity peak show a strong relationship with the hail shaft area within the instrument field of view (FOV). Signatures of multiple scattering (MS) at the Ka band are observed for a range of rimed particles, including but not exclusively for hail. MS amplifies uncertainty in the effective Ka reflectivity estimate and has a negative impact on the accuracy of dual-frequency rainfall retrievals at the ground. The hydrometeor composition of convective cells presents a large inhomogeneity within the DPR FOV. Strong nonuniform beamfilling (NUBF) introduces large ambiguities in the attenuation correction at Ku and Ka bands, which additionally hamper quantitative retrievals. The effective detection of profiles affected by MS is a very challenging task, since the inhomogeneity within the DPR FOV may result in measurements that look remarkably like MS signatures. The shape of the DPR reflectivity profiles is the result of the complex interplay between the scattering properties of the different hydrometeors, NUBF, and MS effects, which significantly reduces the ability of the DPR system to detect hail at the ground.

Open access
Catherine M. Naud
,
James F. Booth
,
Matthew Lebsock
, and
Mircea Grecu

Abstract

Using cyclone-centered compositing and a database of extratropical-cyclone locations, the distribution of precipitation frequency and rate in oceanic extratropical cyclones is analyzed using satellite-derived datasets. The distribution of precipitation rates retrieved using two new datasets, the Global Precipitation Measurement radar–microwave radiometer combined product (GPM-CMB) and the Integrated Multisatellite Retrievals for GPM product (IMERG), is compared with CloudSat, and the differences are discussed. For reference, the composites of AMSR-E, GPCP, and two reanalyses are also examined. Cyclone-centered precipitation rates are found to be the largest with the IMERG and CloudSat datasets and lowest with GPM-CMB. A series of tests is conducted to determine the roles of swath width, swath location, sampling frequency, season, and epoch. In all cases, these effects are less than ~0.14 mm h−1 at 50-km resolution. Larger differences in the composites are related to retrieval biases, such as ground-clutter contamination in GPM-CMB and radar saturation in CloudSat. Overall the IMERG product reports precipitation more often, with larger precipitation rates at the center of the cyclones, in conditions of high precipitable water (PW). The CloudSat product tends to report more precipitation in conditions of dry or moderate PW. The GPM-CMB product tends to systematically report lower precipitation rates than the other two datasets. This intercomparison provides 1) modelers with an observational uncertainty and range (0.21–0.36 mm h−1 near the cyclone centers) when using composites of precipitation for model evaluation and 2) retrieval-algorithm developers with a categorical analysis of the sensitivity of the products to PW.

Full access
Xiang Ni
,
Chuntao Liu
,
Daniel J. Cecil
, and
Qinghong Zhang

Abstract

In previous studies, remote sensing properties of hailstorms have been discussed using various spaceborne sensors. Relationships between hail occurrence and strong passive microwave brightness temperature depressions have been established. Using a 16-yr precipitation-feature database derived from the Tropical Rainfall Measuring Mission (TRMM) satellite, the performance of the TRMM Precipitation Radar and TRMM Microwave Imager is further investigated for hail detection. Detection criteria for hail larger than 19 mm are separately developed from Ku-band radar reflectivity and microwave brightness temperature properties of precipitation features that are collocated with surface hail reports over the southeastern and south-central United States. A threshold of 44 dBZ at −22°C is found to have the highest critical success index and Heidke skill score. The threshold of 230 K at 37 GHz yields the best scores among passive microwave properties. Using these two thresholds, global distributions of possible hail events are generated over 65°S–65°N using two years of observations from the Global Precipitation Measurement Core Observatory satellite. Differences in the derived hail geographical distributions are found between radar and passive microwave methods over tropical South America, the “Maritime Continent,” west-central Africa, Argentina, and South Africa. These discrepancies result from different vertical structures of the maximum radar reflectivity profiles over these regions relative to the southeastern and south-central United States, where the thresholds were established. Those differences generally led to overestimates in the tropics from the passive microwave methods, relative to the radar-based methods.

Open access