Browse

You are looking at 11 - 20 of 11,512 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Clemens Spensberger
,
Camille Li
, and
Thomas Spengler

Abstract

The distinction between eddy-driven and subtropical jets is conceptually important and well-founded based on different driving mechanisms and dominant types of variability. This climatological perspective may be augmented by considering instantaneous maxima in the wind field and linking these to the time-mean jets. Inspired by EOF and cluster analyses to explore the variability in jet occurrences, we propose a straightforward framework that naturally distinguishes subtropical from eddy-driven jets in instantaneous data. We document that for most ocean basins, there is a clear bimodality in instantaneous jet occurrences in potential temperature–wind speed space. The two types of jets in this phase space align well with the conceptual expectations for subtropical and eddy-driven jets regarding their vertical structure as well as their regional occurrence. Interestingly, the bimodality in phase space is most pronounced in the western North Pacific during winter. The climatological jet in this region is typically regarded as “merged,” resulting from a mixture of thermal driving and eddy driving. Our results clarify that the strongest instantaneous jets in this region are classified as subtropical, with eddy-driven jets occurring in close proximity to the climatological mean jet, though weaker and slightly more poleward. We also show that the regions of climatological transition from predominantly subtropical to predominantly eddy-driven jets are just downstream of the strongest climatological jets.

Restricted access
Xiaojian Zheng
,
Cheng Tao
,
Chengzhu Zhang
,
Shaocheng Xie
,
Yuying Zhang
,
Baike Xi
, and
Xiquan Dong

Abstract

The simulations of clouds and surface radiation from 10 CMIP6 models and their CMIP5 predecessors are compared to the ARM ground-based observations over different climate regions. Compared to the ARM radar-lidar derived total cloud fractions (CF T ) and cloud fraction vertical distributions over the six selected sites, both CMIP5 and CMIP6 significantly underestimated CF T and low-level CF over the Northern Hemispheric midlatitude sites (SGPC1 and ENAC1), although the biases are generally smaller in CMIP6. Over the tropical oceanic site (TWPC2), 5 out of 10 CMIP6 models better simulated low-level CF than their CMIP5 predecessors. CMIP6 simulations generally agreed well with the ARM observations in CF T and cloud fraction vertical distributions over the tropical continental (MAOM1) and coastal (TWPC3) sites but missed the transitions between dry and wet seasons, similar to CMIP5 simulations. The improvements in downwelling shortwave fluxes (SWdn) at the surface from the majority of CMIP6 compared to CMIP5 primarily resulted from the improved cloud fraction simulations, especially over the SGPC1, ENAC1, and TWPC3 sites. By contrast, both CMIP5 and CMIP6 models exhibited diverse performances of clouds and shortwave radiation over the Arctic site (NSAC1), where CMIP6 models produced more clouds than CMIP5 models, especially for the low-level clouds. The comparisons between observations and CMIP5 and CMIP6 simulations provide valuable quantitative assessments of the accuracy of mean states and variabilities in the model simulations and shed light on general directions to improve climate models in different regions.

Restricted access
Bo Pang
,
Riyu Lu
,
A. Scaife Adam
, and
Rongcai Ren

Abstract

This study identifies that cold surges over the South China Sea (SCS) have experienced a significant change on decadal time scales. The results indicate that cold surges occur more frequently after the early 2000s than before and are at least partially explained by changes in circulation patterns. Both the negative phase of the Scandinavian (SCA) pattern and the cold phase of the interdecadal Pacific oscillation (IPO) can induce increased cold surges and the IPO effect dominates in recent decades. When the IPO shifts to its cold phase, low-level cyclones are induced over the western North Pacific through a Gill response. The northeasterlies along the northwest flank of the cyclones further lead to intensified cold surges over the SCS. The above processes can be reproduced in coupled models, suggesting a robust connection between the IPO and cold surges. The present findings highlight the role of tropical forcing and bring insight into understanding of the future climate variability and change over East Asia during boreal winter.

Restricted access
Yuming Zhang
,
Tobias Bayr
,
Mojib Latif
,
Zhaoyang Song
,
Wonsun Park
, and
Annika Reintges

Abstract

We investigate the origin of the equatorial Pacific cold sea surface temperature (SST) bias and its link to wind biases, local and remote, in the Kiel Climate Model (KCM). The cold bias is common in climate models participating in phases 5 and 6 of the Coupled Model Intercomparison Project. In the coupled experiments with the KCM, the interannually varying NCEP/CFSR wind stress is prescribed over four spatial domains: globally, over the equatorial Pacific (EP), the northern Pacific (NP), and the southern Pacific (SP). The corresponding EP SST bias is reduced by 100%, 52%, 12%, and 23%, respectively. Thus, the EP SST bias is mainly attributed to the local wind bias, with small but not negligible contributions from the extratropical regions. Erroneous ocean circulation driven by overly strong winds causes the cold SST bias, while the surface heat flux counteracts it. Extratropical Pacific SST biases contribute to the EP cold bias via the oceanic subtropical gyres, which is further enhanced by dynamical coupling in the equatorial region. The origin of the wind biases is examined by forcing the atmospheric component of the KCM in a stand-alone mode with observed SSTs and simulated SSTs from the coupled experiments. Wind biases over the EP, NP, and SP regions originate in the atmosphere model. The cold EP SST bias substantially enhances the wind biases over all three regions, while the NP and SP SST biases support local amplification of the wind bias. This study suggests that improving surface wind stress, at and off the equator, is a key to improve mean-state equatorial Pacific SST in climate models.

Restricted access
Ayumu Miyamoto
,
Hisashi Nakamura
,
Shang-Ping Xie
,
Takafumi Miyasaka
, and
Yu Kosaka

Abstract

The northeastern Pacific climate system features an extensive low-cloud deck off California on the southeastern flank of the subtropical high that accompanies intense northeasterly trades and relatively low sea surface temperatures (SSTs). This study assesses climatological impacts of the low-cloud deck and their seasonal differences by regionally turning on and off the low-cloud radiative effect in a fully coupled atmosphere–ocean model. The simulations demonstrate that the cloud radiative effect causes a local SST decrease of up to 3°C on an annual average with the response extending southwestward with intensified trade winds, indicative of the wind–evaporation–SST (WES) feedback. This nonlocal wind response is strong in summer, when the SST decrease peaks due to increased shortwave cooling, and persists into autumn. In these seasons when the background SST is high, the lowered SST suppresses deep-convective precipitation that would otherwise occur in the absence of the low-cloud deck. The resultant anomalous diabatic cooling induces a surface anticyclonic response with the intensified trades that promote the WES feedback. Such seasonal enhancement of the atmospheric response does not occur without air–sea couplings. The enhanced trades accompany intensified upper-tropospheric westerlies, strengthening the vertical wind shear that, together with the lowered SST, acts to shield Hawaii from powerful hurricanes. On the basin scale, the anticyclonic surface wind response accelerates the North Pacific subtropical ocean gyre to speed up the Kuroshio by as much as 30%. SST thereby increases along the Kuroshio and its extension, intensifying upward turbulent heat fluxes from the ocean to increase precipitation.

Open access
Xiaojing Li

Abstract

Considering the significant differences in the rainfall characteristics over East Asia between the early [May–June (MJ)] and late [July–August (JA)] summer, this study investigates the subseasonal predictability of the rainfall over East Asia in early and late summer, respectively. Distinctions are obvious for both the spatial distribution of the prediction skill and the most predictable patterns, that is, the leading pattern of the average predictable time (APT1) between the MJ and JA rainfall. Further analysis found that the distinct APT1s of MJ and JA rainfall are attributable to their different predictability sources. The predictability of the MJ rainfall APT1 is mainly from the boreal intraseasonal oscillation signal, whereas that of the JA rainfall APT1 is provided by the Pacific–Japan teleconnection pattern. This study sheds light on the temporal variation of predictability sources of summer precipitation over East Asia, offering a possibility to improve the summer precipitation prediction skill over East Asia through separate predictions for early and late summer, respectively.

Restricted access
Jian Cao
,
Xuanqiang Lian
,
Min Cao
,
Bin Wang
,
Hao Wang
,
Xiaowei Zhu
, and
Haikun Zhao

Abstract

The causes of historical changes in the Southern Hemisphere (SH) monsoon are less understood than the Northern Hemisphere (NH) counterpart. Unlike the decline in the NH monsoon during 1901–2014, we found that the SH land monsoon precipitation significantly increased during 1901–2014 in observation, reanalysis, and most historical simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The observed increase in SH land monsoon precipitation is dominated by the Australian and South American monsoons. Moisture budget analysis suggests that half of the wettening is attributable to the strengthening of monsoon circulation, and only one-fifth is caused by atmospheric moistening. The SH monsoon circulation change is mainly affected by the sea surface temperature (SST) gradient between the Indo-Pacific and the eastern Pacific. It enhances the tropical zonal circulation that redistributes the moisture from tropical oceans to land monsoon regions by strengthening the lower-tropospheric convergence and convection. The CMIP6 models, which successfully reproduced the SST contrast between the Indo-Pacific and eastern Pacific, simulate the wettening of the SH monsoon during the historical period; otherwise, the SH monsoon is weakened. In a meridional sense, reanalysis and CMIP6 simulations both demonstrated that the strengthening of SH monsoon convection plays a vital role in the long-term change of zonal mean Hadley circulation, albeit the monsoon band only accounts for 1/3 of the global longitudinal area. Results from this study are useful for constraining the future projection of SH monsoon and understanding the long-term change of Hadley circulation.

Open access
Biyin Xie
,
Yang Yang
,
Hailong Wang
,
Pinya Wang
, and
Hong Liao

Abstract

Fire emissions from the Maritime Continent (MC) over the western tropical Pacific are strongly influenced by El Niño–Southern Oscillation (ENSO), posing various climate effects to the Earth system. In this study, we show that the historical biomass burning emissions of black carbon (BCbb) aerosol in the dry season from the MC are strengthened in El Niño years due to the dry conditions. The eastern Pacific type of El Niño exerts a stronger modulation in BCbb emissions over the MC region than the central Pacific type of El Niño. Based on simulations using the fully coupled Community Earth System Model (CESM), the impacts of increased BCbb emissions on ENSO variability and frequency are also investigated in this study. With BCbb emissions from the MC scaled up by a factor of 10, which enables the identification of climate response from the internal variability, the increased BCbb heats the local atmosphere and changes land–sea thermal contrast, which suppresses the westward transport of the eastern Pacific surface water. It leads to an increase in sea surface temperature in the eastern tropical Pacific, which further enhances ENSO variability and increases the frequency of extreme El Niño and La Niña events. This study highlights the potential role of BCbb emissions on extreme ENSO frequency, and this role may be increasingly important in the warming future with higher wildfire risks.

Restricted access
Xiaojun Guo
,
Ning Zhao
,
Tomoe Nasuno
,
Kazuyoshi Kikuchi
,
Masuo Nakano
, and
H. Annamalai

Abstract

An atmospheric river (AR) is a highly accumulated line of moisture, which often preconditions heavy rainfall events. Considering the short-lived nature of ARs, we aim to understand their characteristics over the western North Pacific (WNP) in boreal summer, focusing on the difference between the post–El Niño (pEN) and non-post–El Niño (npEN) cases in weekly segments rather than the seasonal mean. We found that during AR-active weeks in pEN summers, a meridional dipole pattern of anomalous geopotential height with a more westward-extended WNP subtropical high dominates, favoring AR activity over southern China to the central Pacific. In npEN summers, in contrast, a zonal dipole pattern with an anomalous low over southeast China and an anomalous high over subtropical WNP is pronounced during the AR-active weeks, which is accompanied with warm sea surface temperature anomalies and greater downward shortwave radiation to the southeast of Japan. Such anomalous circulation leads to enhanced AR occurrence over the northern South China Sea (SCS) to Japan. The above differences in the AR features between the two cases appear as the distinct regionality in the AR-related rainfall over eastern China and Japan. Temporal decompositions reveal that both seasonal mean and submonthly variations play dominant roles in the anomalous circulation during AR-active weeks in pEN summers, while the submonthly variations are more pronounced in npEN summers. Further analysis also suggests that tropical cyclones could impact AR occurrence in both cases with different patterns of atmospheric responses, inducing remarkable AR enhancement over the northern SCS in npEN summers.

Restricted access
Cheng Zheng
,
Yutian Wu
,
Mingfang Ting
,
James A. Screen
, and
Pengfei Zhang

Abstract

Cold winters over Eurasia often coincide with warm winters in the Arctic, which has become known as the “warm Arctic–cold Eurasia” pattern. The extent to which this observed correlation is indicative of a causal response to sea ice loss is debated. Here, using large multimodel ensembles of coordinated experiments, we find that the Eurasian temperature response to Arctic sea ice loss is weak compared to internal variability and is not robust across climate models. We show that Eurasian cooling is driven by tropospheric and stratospheric circulation changes in response to sea ice loss but is counteracted by tropospheric thermodynamical warming, as the local warming induced by sea ice loss spreads into the midlatitudes by eddy advection. Although opposing effects of thermodynamical warming and dynamical cooling are found robustly across different models or different sea ice perturbations, their net effect varies in sign and magnitude across the models, resulting in diverse model temperature responses over Eurasia. The contributions from both tropospheric dynamics and thermodynamics show substantial intermodel spread. Although some of this spread in the Eurasian winter temperature response to sea ice loss may stem from model uncertainty, even with several hundred ensemble members, it is challenging to isolate model differences in the forced response from internal variability.

Restricted access