Browse
Abstract
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) plays an important role in monitoring global precipitation. In this study, an along-track striping noise is found in GMI observations of brightness temperatures for the two highest-frequency channels—12 and 13—with their central frequencies centered at 183.31 GHz. These two channels are designed for sounding the water vapor in the middle and upper troposphere. The pitch maneuver data of deep space confirmed an existence of striping noise in channels 12 and 13. A striping noise mitigation method is used for extracting the striping noise from the earth scene or deep space measurements of brightness temperatures by combining the principle component analysis (PCA) with the ensemble empirical mode decomposition (EEMD) method. A power spectrum density analysis indicated that the frequency of striping noise ranges between 0.06 and 0.533 s−1, where the right bound of 0.533 s−1 of frequency is exactly the inverse of the time (i.e., 1.875 s) it takes for the GMI to complete one conical scan line. The magnitude of striping noise in the brightness temperature observations of GMI channels 12 and 13 is about ±0.3 K. It is shown that after striping noise mitigation, the observation minus model simulation (O − B) distributions of both the earth scene and deep space brightness temperatures show no visible striping features.
Abstract
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) plays an important role in monitoring global precipitation. In this study, an along-track striping noise is found in GMI observations of brightness temperatures for the two highest-frequency channels—12 and 13—with their central frequencies centered at 183.31 GHz. These two channels are designed for sounding the water vapor in the middle and upper troposphere. The pitch maneuver data of deep space confirmed an existence of striping noise in channels 12 and 13. A striping noise mitigation method is used for extracting the striping noise from the earth scene or deep space measurements of brightness temperatures by combining the principle component analysis (PCA) with the ensemble empirical mode decomposition (EEMD) method. A power spectrum density analysis indicated that the frequency of striping noise ranges between 0.06 and 0.533 s−1, where the right bound of 0.533 s−1 of frequency is exactly the inverse of the time (i.e., 1.875 s) it takes for the GMI to complete one conical scan line. The magnitude of striping noise in the brightness temperature observations of GMI channels 12 and 13 is about ±0.3 K. It is shown that after striping noise mitigation, the observation minus model simulation (O − B) distributions of both the earth scene and deep space brightness temperatures show no visible striping features.
Abstract
The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).
Abstract
The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).