Browse

You are looking at 11 - 20 of 18,115 items for :

  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Yasutaka Ikuta
and
Udai Shimada

Abstract

A few high-wind observations have been obtained from satellites over the ocean around tropical cyclones (TCs), but the impact of data assimilation of such observations over the sea on forecasting has not been clear. The spaceborne synthetic aperture radar (SAR) provides high-resolution and wide-area ocean surface wind speed data around the center of a TC. In this study, the impact of data assimilation of the ocean surface wind speed of SAR (OWSAR) on regional model forecasts was investigated. The assimilated data were estimated from SAR on board Sentinel-1 and RADARSAT-2. The bias of OWSAR depends on wind speed, the observation error variance depends on wind speed and incidence angle, and the spatial observation error correlation depends on the incidence angle. The observed OWSAR is screened using the variational quality control method with the Huber norm. In the case of Typhoon Hagibis (2019), OWSAR assimilation modified the TC low-level inflow, which also modified the TC upper-level outflow. The propagation of this OWSAR assimilation effect from the surface to the upper troposphere was given by a four-dimensional variational method that searches for the optimal solution within strong constraints on the time evolution of the forecast model. Statistical validation confirmed that errors in the TC intensity forecast decreased over lead times of 15 h, but this was not statistically significant. The validation using wind profiler observations showed that OWSAR assimilation significantly improved the accuracy of wind speed predictions from the middle to the upper level of the troposphere.

Significance Statement

The purpose of this study was to demonstrate the impact of the assimilation of ocean surface wind speed by synthetic aperture radar (SAR) on regional model predictions. In the case of tropical cyclones, ocean surface wind speed assimilation modified inflows in the lower layer and outflows in the upper layer. The results indicate that the SAR assimilation improves the accuracy of wind speed forecasts in the middle to upper troposphere.

Restricted access
Maziar Bani Shahabadi
and
Mark Buehner

Abstract

Cloud-affected microwave humidity sounding radiances were excluded from assimilation in the hybrid four-dimensional ensemble–variational (4D-EnVar) system of the Global Deterministic Prediction System (GDPS) at Environment and Climate Change Canada (ECCC). This was due to the inability of the current radiative transfer model to consider the scattering effect from frozen hydrometeors at these frequencies. In addition to upgrading the observation operator to RTTOV-SCATT, quality control, bias correction, and 4D-EnVar assimilation components are modified to perform all-sky assimilation of Microwave Humidity Sounder (MHS) channel 2–5 observations over ocean in the GDPS. The input profiles to RTTOV-SCATT are extended to include liquid cloud, ice cloud, and cloud fraction profiles for the simulation and assimilation of MHS observations over water. There is a maximum (35%) increase in the number of channel 2 assimilated MHS observations with smaller increases for channels 3–5 in the all-sky experiment compared to the clear-sky experiment, mostly because of newly assimilated cloud-affected observations. The standard deviation (stddev) of difference between the observed global positioning system radio occultation (GPSRO) refractivity observations and the corresponding simulated values using the background state was reduced in the lower troposphere below 9 km in the all-sky experiment. Verifications of forecasts against the radiosonde observations show statistically significant reductions of 1% in the stddev of error for geopotential height, temperature, and horizontal wind for the all-sky experiment between 72- and 120-h forecast ranges in the troposphere in the Northern Hemisphere domain. Verifications of forecasts against ECMWF analyses also show small improvements in the zonal mean of stddev of error for temperature and horizontal wind for the all-sky experiment between 72- and 120-h forecast ranges. This work was planned for operational implementation in the GDPS in fall 2023.

Open access
Austin G. Clark
and
Daniel J. Cecil

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) was used to investigate interannual variability of lightning from 1998 to 2014 within the 38°S–38°N range. Previous studies have indicated that the El Niño–Southern Oscillation (ENSO) phenomenon is one significant contributor to interannual lightning variability, potentially the dominant mechanism on the global scale. This period of 16 years contained four warm- (El Niño), eight cold- (La Niña), and four neutral-phase ENSO years based on the oceanic Niño index. Large magnitude lightning anomalies were found during the warm phase of ENSO, with mean warm-phase anomalies of >10 flashes (1000 km)−2 min−1 in north-central Africa and Argentina. This includes a +35 flashes (1000 km)−2 min−1 anomaly in Argentina during the 2009 El Niño. In general, large-scale anomalies of thermodynamic properties and upper-atmospheric vertical motion coincided with the lightning anomalies observed in both Africa and South America. The anomaly over north-central Africa, however, was characterized by a 6-week shift in the annual lightning maximum with the warm phase, a result of the more complex environmental response to ENSO over the Sahel. The most consistent ENSO anomalies with appreciable lightning were found in southeastern Africa, northwestern Brazil, central Mexico, and the southern Red Sea. Of these, all but the Mexico region had enhanced lightning with the cold phase and suppressed lightning with the warm phase.

Restricted access
Michael L. Wasserstein
and
W. James Steenburgh

Abstract

Heavy orographic snowfall can disrupt transportation and threaten lives and property in mountainous regions but benefits water resources, winter sports, and tourism. Little Cottonwood Canyon (LCC) in northern Utah’s Wasatch Range is one of the snowiest locations in the interior western United States and frequently observes orographic snowfall extremes with threats to transportation, structures, and public safety due to storm-related avalanche hazards. Using manual new-snow and liquid precipitation equivalent (LPE) observations, ERA5 reanalyses, and operational radar data, this paper examines the characteristics of cool-season (October–April) 12-h snowfall extremes in upper LCC. The 12-h extremes, defined based on either 95th percentile new snow or LPE, occur for a wide range of crest-level flow directions. The distribution of LPE extremes is bimodal with maxima for south-southwest or north-northwest flow, whereas new-snow extremes occur most frequently during west-northwest flow, which features colder storms with higher snow-to-liquid ratios. Both snowfall and LPE extremes are produced by diverse synoptic patterns, including inland-penetrating or decaying atmospheric rivers from the south through northwest that avoid the southern high Sierra Nevada, frontal systems, post-cold-frontal northwesterly flow, south-southwesterly cold-core flow, and closed low pressure systems. Although often associated with heavy precipitation in other mountainous regions, the linkages between local integrated water vapor transport (IVT) and orographic precipitation extremes in LCC are relatively weak, and during post-cold-frontal northwesterly flow, highly localized and intense snowfall can occur despite low IVT. These results illustrate the remarkable diversity of storm characteristics producing orographic snowfall extremes at this interior continental mountain location.

Significance Statement

Little Cottonwood Canyon in northern Utah’s central Wasatch Range frequently experiences extreme snowfall events that pose threats to lives and property. In this study, we illustrate the large diversity of storm characteristics that produce this extreme snowfall. Meteorologists commonly use the amount of water vapor transport in the atmosphere to predict heavy mountain precipitation, but that metric has limited utility in Little Cottonwood Canyon where heavy snowfall can occur with lower values of such transport. Our results can aid weather forecasting in the central Wasatch Range and have implications for understanding precipitation processes in mountain ranges throughout the world.

Restricted access
Jia Liang
,
Liguang Wu
,
Chunyi Xiang
, and
Qingyuan Liu

Abstract

Typhoon In-fa (2021) experienced a weakening process on 22–23 July in a large-scale environment favorable for tropical cyclone (TC) intensification. All operational forecasts and the Global Forecast System (GFS) forecasts predicted a continuous intensification, which deviated significantly from the observation. The analysis of the GFS analysis product shows a coalescence process of Typhoon In-fa with an intraseasonal monsoon gyre during the period, resulting in an increased outer size of In-fa and well-organized convection to the east, which prevented transporting the mass and moisture into the inner-core area of In-fa, thus leading to the weakening. Nevertheless, this essential coalescence process was not captured in the GFS forecasts due to the poor prediction of the monsoon gyre. The analysis shows that the forecasted monsoon gyre on 20–22 July had an eastward location at 72- and 96-h lead times and a weaker intensity and outer circulation at 24- and 48-h lead times, leading to the forecasted TC always moving in its north and west, in agreement with numerical simulation results that the monsoon gyre with a weaker outer circulation is not conducive to the coalescence. Thus, the deep convection to the east of In-fa preventing the inward transportation of mass and moisture did not develop in the GFS forecasts. As a result, the GFS forecasted that In-fa would continue intensifying in a favorable environment on 22–23 July. The findings of this study would prompt forecasters to pay attention to the prediction of the monsoon gyre and its influence on the TC intensity in forecast products available to them.

Restricted access
Nicholas M. Leonardo
and
Brian A. Colle

Abstract

Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used to analyze the precipitation structures and their evolution in the comma head of a developing extratropical cyclone. After the cyclone spins up by hour 120, snow multibands develop within a wedge-shaped region east of the near-surface low center within a region of 700–500-hPa potential and conditional instability. The cells deepen and elongate northeastward as they propagate north. There is also an increase in 600–500-hPa southwesterly vertical wind shear prior to band development. The system stops producing bands 12 h later as the differential moisture advection weakens, and the instability is depleted by the convection. Sensitivity experiments are run in which the initial stability and horizontal temperature gradient of the baroclinic wave are adjusted by 5%–10%. A 10% decrease in initial instability results in less than half the control run potential instability by 120 h and the cyclone fails to produce multibands. Meanwhile, a 5% decrease in instability delays the development of multibands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by 10% delays the growth of vertical shear and instability, corresponding to multibands developing 12–18 h later. Conversely, increasing the horizontal temperature gradient by 10% corresponds to greater vertical shear, resulting in more prolific multiband activity developing ∼12 h earlier. Overall, the relatively large changes in band characteristics over a ∼12-h period (120–133 h) and band evolutions for the sensitivity experiments highlight the potential predictability challenges.

Significance Statement

Multiple-banded precipitation structures are difficult to predict and can greatly impact snowfall forecasts. This study investigates the precipitation bands in the comma head of a low pressure system in a numerical model to systematically isolate the roles of different ambient conditions. The results emphasize that environments with instability (e.g., air free to rise after small upward displacement) and increasing winds with height favor the development of banded structures. The forecast challenge for these bands is illustrated by starting the model with relatively small changes in the temperature field. Decreasing the instability by 10% suppresses band development, while increasing (decreasing) the horizontal temperature change across the system by 10% corresponds to the bands developing 12 h earlier (later).

Restricted access
Clairisse A. Reiher
and
Andrew C. Winters

Abstract

A vertical superposition of the polar and subtropical jet streams constitutes a unique synoptic-scale environment with the potential to induce high-impact weather, including anomalously strong surface cyclones that are accompanied by heavy precipitation and strong winds. Jet superpositions are not always a sufficient condition for the occurrence of high-impact weather, however, so understanding the dynamical and thermodynamic environments that favor the development of high-impact weather in association with jet superpositions is essential for improving sensible weather forecasts during these events. In this study, we pair a climatology of jet superpositions with climatologies of atmospheric rivers and surface cyclones to determine the frequency with which these features accompany jet superpositions. We subsequently construct two subsets of jet superpositions for further analysis. “High-impact” jet superposition cases are defined as those that feature an atmospheric river and a highly anomalous surface cyclone relative to climatology, which can potentially support extreme near-surface winds and precipitation. In contrast, “null” cases are defined as jet superposition cases that are not associated with a surface cyclone and are therefore less likely to support widespread high-impact weather. Composite analyses are then performed to identify discriminating environmental factors between high-impact and null cases, and how these factors influence jet superposition dynamics. We find that stronger environmental baroclinicity and a sufficient moisture supply within the near-jet environment are common characteristics of high-impact cases. These characteristics subsequently support the development of a more vigorous ageostrophic transverse circulation beneath the superposed jet’s exit region during high-impact cases and more intense surface cyclogenesis.

Significance Statement

A jet superposition event occurs when the normally separate polar and subtropical jets combine to form a single jet. This study aims to understand what factors differentiate jet superposition events that coincide with strong winds and heavy precipitation, or “high-impact weather,” from those that are less likely to coincide with such weather conditions. We identified several important environmental characteristics that tend to precede jet superposition events with a large potential to induce high-impact weather, including increased moisture and a strengthened pole-to-equator temperature gradient. These results provide indicators forecasters may consider when predicting the impacts of a jet superposition event.

Restricted access
Tobias I. D. Ross
and
Sonia Lasher-Trapp

Abstract

Cold pools produced by deep convection can initiate new convection, and their representation in larger-scale weather and climate models could improve prediction of the extent and timing of upscale growth. Cold pools originate from latent cooling from precipitation changing phase, but little attention has been paid to microphysical influences on cold pool characteristics, particularly CCN effects. Datasets obtained from the CACTI and RELAMPAGO field campaigns, along with idealized numerical modeling, are utilized to investigate the hypothesis that convective storms forming in higher-CCN environments generate their first surface rainfall later, delaying cold pool initiation. Aircraft observations of CCN and shallow convection on 9 days do suggest a CCN effect. Those ingesting more CCN contained fewer drizzle drops, although a decreased cloud depth with increasing CCN was also likely a limiting factor. In three of those cases that later developed into deep convection, the timing of cold pool onset was not ubiquitously delayed in environments with more CCN. Idealized numerical simulations suggest that an ordinary thunderstorm can experience small delays in cold pool onset with increasing CCN due to changes in graupel production, but CCN effects on the cold pool from a supercell thunderstorm can be easily overpowered by its unique dynamics. A strong inverse relationship between cold pool strength, expansion rate, and depth with increasing CCN is suggested by the results of the ordinary thunderstorm simulation. Further consideration of CCN appears warranted for future cold pool parameterization development, but other environmental factors affecting storm morphology and precipitation cannot be ignored.

Restricted access
Mariko Oue
,
Brian A. Colle
,
Sandra E. Yuter
,
Pavlos Kollias
,
Phillip Yeh
, and
Laura M. Tomkins

Abstract

Limited knowledge exists about ∼100-m-scale precipitation processes within U.S. northeast coastal snowstorms because of a lack of high-resolution observations. We investigate characteristics of microscale updraft regions within the cyclone comma head and their relationships with snowbands, wind shear, frontogenesis, and vertical mass flux using high-spatiotemporal-resolution vertically pointing Ka-band radar measurements, soundings, and reanalysis data for four snowstorms observed at Stony Brook, New York. Updraft regions are defined as contiguous time–height plotted areas with upward Doppler velocity without hydrometeor sedimentation that is equal to or greater than 0.4 m s−1. Most updraft regions in the time–height data occur on a time scale of seconds (<20 s), which is equivalent to spatial scales < 500 m. These small updraft regions within cloud echo occur more than 30% of the time for three of the four cases and 18% for the other case. They are found at all altitudes and can occur with or without frontogenesis and with or without snowbands. The updraft regions with relatively large Doppler spectrum width (>0.4 m s−1) occur more frequently within midlevels of the storms, where there are strong wind shear layers and moist shear instability layers. This suggests that the dominant forcing for the updrafts appears to be turbulence associated with the vertical shear instability. The updraft regions can be responsible for upward mass flux when they are closer together in space and time. The higher values of column mean upward mass flux often occur during snowband periods.

Significance Statement

Small-scale (<500 m) upward motions within four snowstorms along the U.S. northeast coast are analyzed for the first time using high-spatiotemporal-resolution millimeter-wavelength cloud radar pointed vertically. The analysis reveals that updrafts appear in the storms regardless of whether snowbands are present or whether there is larger-scale forcing for ascent. The more turbulent and stronger updrafts frequently occur in midlevels of storms associated with instability from vertical shear and contribute to upward mass flux during snowband periods when they are closer together in space and time.

Open access
Ron McTaggart-Cowan
,
David S. Nolan
,
Rabah Aider
,
Martin Charron
,
Jan-Huey Chen
,
Jean-François Cossette
,
Stéphane Gaudreault
,
Syed Husain
,
Linus Magnusson
,
Abdessamad Qaddouri
,
Leo Separovic
,
Christopher Subich
, and
Jing Yang

Abstract

The operational Canadian Global Deterministic Prediction System suffers from a weak-intensity bias for simulated tropical cyclones. The presence of this bias is confirmed in progressively simplified experiments using a hierarchical system development technique. Within a semi-idealized, simplified-physics framework, an unexpected insensitivity to the representation of relevant physical processes leads to investigation of the model’s semi-Lagrangian dynamical core. The root cause of the weak-intensity bias is identified as excessive numerical dissipation caused by substantial off-centering in the two time-level time integration scheme used to solve the governing equations. Any (semi)implicit semi-Lagrangian model that employs such off-centering to enhance numerical stability will be afflicted by a misalignment of the pressure gradient force in strong vortices. Although the associated drag is maximized in the tropical cyclone eyewall, the impact on storm intensity can be mitigated through an intercomparison-constrained adjustment of the model’s temporal discretization. The revised configuration is more sensitive to changes in physical parameterizations and simulated tropical cyclone intensities are improved at each step of increasing experimental complexity. Although some rebalancing of the operational system may be required to adapt to the increased effective resolution, significant reduction of the weak-intensity bias will improve the quality of Canadian guidance for global tropical cyclone forecasting.

Significance Statement

Global numerical weather prediction systems provide important guidance to forecasters about tropical cyclone development, motion, and intensity. Despite recent improvements in the Canadian operational model’s ability to predict tropical cyclone formation, the system systematically underpredicts the intensity of these storms. In this study, we use a set of increasingly simplified experiments to identify the source of this error, which lies in the numerical time-stepping scheme used to solve the model equations. By decreasing numerical drag on the tropical cyclone circulation, intensity predictions that resemble those of other global modeling systems are achieved. This will improve the quality of Canadian tropical cyclone guidance for forecasters around the world.

Open access