You are looking at 11 - 12 of 12 items for :

  • NASA Hurricane and Severe Storm Sentinel (HS3) x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Sergio F. Abarca, Michael T. Montgomery, Scott A. Braun, and Jason Dunion


A first observationally based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administration’s (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maximum that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spinup tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spinup tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maximum is observed in the second period of study. An analysis of the boundary layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spinup of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying double eyewalled storm period.

Full access
Erin B. Munsell, Jason A. Sippel, Scott A. Braun, Yonghui Weng, and Fuqing Zhang


The governing dynamics and uncertainties of an ensemble simulation of Hurricane Nadine (2012) are assessed through the use of a regional-scale convection-permitting analysis and forecast system based on the Weather Research and Forecasting (WRF) Model and an ensemble Kalman filter (EnKF). For this case, the data that are utilized were collected during the 2012 phase of the National Aeronautics and Space Administration’s (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment. The majority of the tracks of this ensemble were successful, correctly predicting Nadine’s turn toward the southwest ahead of an approaching midlatitude trough, though 10 members forecasted Nadine to be carried eastward by the trough. Ensemble composite and sensitivity analyses reveal the track divergence to be caused by differences in the environmental steering flow that resulted from uncertainties associated with the position and subsequent strength of a midlatitude trough.

Despite the general success of the ensemble track forecasts, the intensity forecasts indicated that Nadine would strengthen, which did not happen. A sensitivity experiment performed with the inclusion of sea surface temperature (SST) updates significantly reduced the intensity errors associated with the simulation. This weakening occurred as a result of cooling of the SST field in the vicinity of Nadine, which led to weaker surface sensible and latent heat fluxes at the air–sea interface. A comparison of environmental variables, including relative humidity, temperature, and shear yielded no obvious differences between the WRF-EnKF simulations and the HS3 observations. However, an initial intensity bias in which the WRF-EnKF vortices are stronger than the observed vortex appears to be the most likely cause of the final intensity errors.

Full access