Browse

You are looking at 11 - 20 of 30 items for :

  • Tropical Cyclone Intensity Experiment (TCI) x
  • Refine by Access: All Content x
Clear All
Shixuan Zhang and Zhaoxia Pu

Abstract

Observations from High-Definition Sounding System (HDSS) dropsondes, collected for Hurricane Joaquin during the Office of Naval Research Tropical Cyclone Intensity (TCI) field experiment in 2015, are assimilated into the NCEP Hurricane Weather Research and Forecasting (HWRF) Model. The Gridpoint Statistical Interpolation (GSI)-based hybrid three-dimensional and four-dimensional ensemble–variational (3DEnVar and 4DEnVar) data assimilation configurations are compared. The assimilation of HDSS dropsonde observations can help HWRF initialization by generating consistent analysis between wind and pressure fields and can also compensate for the initial maximum surface wind errors in the absence of initial vortex intensity correction. Compared with GSI–3DEnVar, the assimilation of HDSS dropsonde observations using GSI–4DEnVar generates a more realistic initial vortex intensity and reproduces the rapid weakening (RW) of Hurricane Joaquin, suggesting that the assimilation of high-resolution inner-core observations (e.g., HDSS dropsonde data) based on an advanced data assimilation method (e.g., 4DEnVar) can potentially outperform the vortex initialization scheme currently used in HWRF. Additionally, the assimilation of HDSS dropsonde observations can improve the simulation of vortex structure changes and the accuracy of the vertical motion within the TC inner-core region, which is essential to the successful simulation of the RW of Hurricane Joaquin with HWRF. Additional experiments with GSI–4DEnVar in different configurations also indicate that the performance of GSI–4DEnVar can be further improved with a high-resolution background error covariance and a denser observational bin.

Open access
Xu Lu and Xuguang Wang

Abstract

Assimilating inner-core observations collected from recent field campaign programs such as Tropical Cyclone Intensity (TCI) and Intensity Forecasting Experiment (IFEX) together with the enhanced atmospheric motion vectors (AMVs) produce realistic three-dimensional (3D) analyses using the newly developed GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation (DA) system for the Hurricane Weather Research and Forecasting (HWRF) Model for Hurricane Patricia (2015). However, more persistent surface wind maximum spindown is found in the intensity forecast initialized from the realistic analyses produced by the DA system but not from the unrealistic initial conditions produced through vortex modification. Diagnostics in this study reveal that the spindown issue is likely attributed to the deficient HWRF Model physics that are unable to maintain the realistic 3D structures from the DA analysis. The horizontal diffusion is too strong to maintain the realistically observed vertical oscillation of radial wind near the eyewall region. The vertical diffusion profile cannot produce a sufficiently strong secondary circulation connecting the realistically elevated upper-level outflow produced in the DA analysis. Further investigations with different model physics parameterizations demonstrate that spindown can be alleviated by modifying model physics parameterizations. In particular, a modified turbulent mixing parameterization scheme together with a reduced horizontal diffusion is found to significantly alleviate the spindown issue and to improve the intensity forecast. Additional experiments show that the peak-simulated intensity and rapid intensification rate can be further improved by increasing the model resolution. But the model resolution is not as important as model physics in the spindown alleviation.

Full access
Benjamin C. Trabing, Michael M. Bell, and Bonnie R. Brown

Abstract

Potential intensity theory predicts that the upper-tropospheric temperature acts as an important constraint on tropical cyclone (TC) intensity. The physical mechanisms through which the upper troposphere impacts TC intensity and structure have not been fully explored, however, due in part to limited observations and the complex interactions between clouds, radiation, and TC dynamics. In this study, idealized Weather Research and Forecasting Model ensembles initialized with a combination of three different tropopause temperatures and with no radiation, longwave radiation only, and full diurnal radiation are used to examine the physical mechanisms in the TC–upper-tropospheric temperature relationship on weather time scales. Simulated TC intensity and structure are strongly sensitive to colder tropopause temperatures using only longwave radiation, but are less sensitive using full radiation and no radiation. Colder tropopause temperatures result in deeper convection and increased ice mass aloft in all cases, but are more intense only when radiation was included. Deeper convection leads to increased local longwave cooling rates but reduced top-of-the-atmosphere outgoing longwave radiation, such that the total radiative heat sink is reduced from a Carnot engine perspective in stronger storms. We hypothesize that a balanced response in the secondary circulation described by the Eliassen equation arises from upper-troposphere radiative cooling anomalies that lead to stronger tangential winds. The results of this study further suggest that radiation and cloud–radiative feedbacks have important impacts on weather time scales.

Full access
Patrick Duran and John Molinari

Abstract

Upper-level static stability (N 2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N 2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N 2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N 2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N 2 evolution of TCs. These N 2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.

Full access
Russell L. Elsberry, Eric A. Hendricks, Christopher S. Velden, Michael M. Bell, Melinda Peng, Eleanor Casas, and Qingyun Zhao

Abstract

A dynamic initialization assimilation scheme is demonstrated utilizing rapid-scan atmospheric motion vectors (AMVs) at 15-min intervals to simulate the real-time capability that now exists from the new generation of geostationary meteorological satellites. The impacts of these AMVs are validated with special Tropical Cyclone Intensity Experiment (TCI-15) datasets during 1200–1800 UTC 4 October leading up to a NASA WB-57 eyewall crossing of Hurricane Joaquin. Incorporating the AMV fields in the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) COAMPS Dynamic Initialization (SCDI) means there are 30 and 90 time steps on the 15- and 5-km grids, respectively, during which the mass fields are adjusted to these AMV-based wind increments during each 15-min assimilation period. The SCDI analysis of the three-dimensional vortex structure of Joaquin at 1800 UTC 4 October closely replicates the vortex tilt analyzed from the High-Definition Sounding System (HDSS) dropwindsondes. Vertical wind shears based on the AMVs at 15-min intervals are well correlated with the extreme rapid decay, an interruption of that rapid decay, and the subsequent period of constant intensity of Joaquin. Utilizing the SCDI analysis as the initial conditions for two versions of the COAMPS-TC model results in an accurate 72-h prediction of the interruption of the rapid decay and the period of constant intensity. Upscaling a similar SCDI analysis based on the 15-min interval AMVs provides a more realistic intensity and structure of Tropical Storm Joaquin for the initial conditions of the Navy Global Environmental Model (NAVGEM) than the synthetic TC vortex used operationally. This demonstration for a single 6-h period of AMVs indicates the potential for substantial impacts when an end-to-end cycling version is developed.

Full access
David R. Ryglicki, Joshua H. Cossuth, Daniel Hodyss, and James D. Doyle

Abstract

A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.

Full access
David R. Ryglicki, James D. Doyle, Yi Jin, Daniel Hodyss, and Joshua H. Cossuth

Abstract

We investigate a class of tropical cyclones (TCs) that undergo rapid intensification (RI) in moderate vertical wind shear through analysis of a series of idealized model simulations. Two key findings derived from observational analysis are that the average 200–850-hPa shear value is 7.5 m s−1 and that the TCs displayed coherent cloud structures, deemed tilt-modulated convective asymmetries (TCA), which feature pulses of deep convection with periods of between 4 and 8 h. Additionally, all of the TCs are embedded in an environment that is characterized by shear associated with anticyclones, a factor that limits depth of the strongest environmental winds in the vertical. The idealized TC develops in the presence of relatively shallow environmental wind shear of an anticyclone. An analysis of the TC tilt in the vertical demonstrates that the source of the observed 4–8-h periodicity of the TCAs can be explained by smaller-scale nutations of the tilt on the longer, slower upshear precession. When the environmental wind shear occurs over a deeper layer similar to that of a trough, the TC does not develop. The TCAs are characterized as collections of updrafts that are buoyant throughout the depth of the TC since they rise into a cold anomaly caused by the tilting vortex. At 90 h into the simulation, RI occurs, and the tilt nutations (and hence the TCAs) cease to occur.

Full access
Eric A. Hendricks, Russell L. Elsberry, Christopher S. Velden, Adam C. Jorgensen, Mary S. Jordan, and Robert L. Creasey

Abstract

The objective in this study is to demonstrate how two unique datasets from the Tropical Cyclone Intensity (TCI-15) field experiment can be used to diagnose the environmental and internal factors contributing to the interruption of the rapid decay of Hurricane Joaquin (2015) and then a subsequent 30-h period of constant intensity. A special CIMSS vertical wind shear (VWS) dataset reprocessed at 15-min intervals provides a more precise documentation of the large (~15 m s−1) VWS throughout most of the rapid decay period, and then the timing of a rapid decrease in VWS to moderate (~8 m s−1) values prior to, and following, the rapid decay period. During this period, the VWS was moderate because Joaquin was between large VWSs to the north and near-zero VWSs to the south, which is considered to be a key factor in how Joaquin was able to be sustained at hurricane intensity even though it was moving poleward over colder water. A unique dataset of High Definition Sounding System (HDSS) dropwindsondes deployed from the NASA WB-57 during the TCI-15 field experiment is utilized to calculate zero-wind centers during Joaquin center overpasses that reveal for the first time the vortex tilt structure through the entire troposphere. The HDSS datasets are also utilized to calculate the inertial stability profiles and the inner-core potential temperature anomalies in the vertical. Deeper lower-tropospheric layers of near-zero vortex tilt are correlated with stronger storm intensities, and upper-tropospheric layers with large vortex tilts due to large VWSs are correlated with weaker storm intensities.

Full access
Nannan Qin and Da-Lin Zhang

Abstract

Hurricane Patricia (2015) broke records in both peak intensity and rapid intensification (RI) rate over the eastern Pacific basin. All of the then-operational models predicted less than half of its extraordinary intensity and RI rate, leaving a challenge for numerical modeling studies. In this study, a successful 42-h simulation of Patricia is obtained using a quintuply nested-grid version of the Weather Research and Forecast (WRF) Model with the finest grid size of 333 m. Results show that the WRF Model, initialized with the Global Forecast System Final Analysis data only, could reproduce the track, peak intensity, and many inner-core features, as verified against various observations. In particular, its simulated maximum surface wind of 92 m s−1 is close to the observed 95 m s−1, capturing the unprecedented RI rate of 54 m s−1 (24 h)−1. In addition, the model reproduces an intense warm-cored eye, a small-sized eyewall with a radius of maximum wind of less than 10 km, and the distribution of narrow spiral rainbands. A series of sensitivity simulations is performed to help understand which model configurations are essential to reproducing the extraordinary intensity of the storm. Results reveal that Patricia’s extraordinary development and its many inner-core structures could be reasonably well simulated if ultrahigh horizontal resolution, appropriate model physics, and realistic initial vortex intensity are incorporated. It is concluded that the large-scale conditions (e.g., warm sea surface temperature, weak vertical wind shear, and the moist intertropical convergence zone) and convective organization play important roles in determining the predictability of Patricia’s extraordinary RI and peak intensity.

Full access
Quanjia Zhong, Jianping Li, Lifeng Zhang, Ruiqiang Ding, and Baosheng Li

Abstract

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are investigated using TC best track data. The results show that the predictability limit of the TC minimum central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

Full access