Browse

You are looking at 11 - 20 of 9,660 items for :

  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All
Hans Van de Vyver, Bert Van Schaeybroeck, Rozemien De Troch, Lesley De Cruz, Rafiq Hamdi, Cecille Villanueva-Birriel, Philippe Marbaix, Jean-Pascal van Ypersele, Hendrik Wouters, Sam Vanden Broucke, Nicole P.M. van Lipzig, Sébastien Doutreloup, Coraline Wyard, Chloé Scholzen, Xavier Fettweis, Steven Caluwaerts, and Piet Termonia

Abstract

Sub-daily precipitation extremes are high-impact events that can result in flash floods, sewer system overload, or landslides. Several studies have reported an intensification of projected short-duration extreme rainfall in a warmer future climate. Traditionally, regional climate models (RCMs) are run at a coarse resolution using deep-convection parameterization for these extreme events. As computational resources are continuously ramping up, these models are run at convection-permitting resolution, thereby partly resolving the small-scale precipitation events explicitly. To date, a comprehensive evaluation of convection-permitting models is still missing. We propose an evaluation strategy for simulated sub-daily rainfall extremes that summarizes the overall RCM performance. More specifically, the following metrics are addressed: the seasonal/diurnal cycle, temperature and humidity dependency, temporal scaling and spatio-temporal clustering. The aim of this paper is: (i) to provide a statistical modeling framework for some of the metrics, based on extreme value analysis, (ii) to apply the evaluation metrics to a micro-ensemble of convection-permitting RCM simulations over Belgium, against high-frequency observations, and (iii) to investigate the added value of convection-permitting scales with respect to coarser 12-km resolution. We find that convection-permitting models improved precipitation extremes on shorter time scales (i.e, hourly or two-hourly), but not on 6h-24h time scales. Some metrics such as the diurnal cycle or the Clausius-Clapeyron rate are improved by convection-permitting models, whereas the seasonal cycle appears robust across spatial scales. On the other hand, the spatial dependence is poorly represented at both convection-permitting scales and coarser scales. Our framework provides perspectives for improving high-resolution atmospheric numerical modeling and datasets for hydrological applications.

Restricted access
Ying-Hui Jia, Fang-Fang Li, Kun Fang, Guang-Qian Wang, and Jun Qiu

Abstract

Recently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.

Restricted access
Robert Fritzen, Victoria Lang, and Vittorio A. Gensini

Abstract

Extratropical cyclones are the primary driver of sensible weather conditions across the mid-latitudes of North America, often generating various types of precipitation, gusty non-convective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient due to anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified based on their genesis location. Additionally, bomb cyclones—extratropical cyclones that recorded a latitude normalized pressure fall of 24 hPa in 24-hr—were identified and stratified for additional analysis. Cyclone lifespan across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈ 270 cyclones were tracked across the analysis domain per year, with an average of ≈ 18 year−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 year−1 during the period 1979–1999 to 250 year−1 during the period 2000–2019. Spatially, decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah mountain range. No significant interannual or spatial trends were noted with bomb cyclone frequency.

Restricted access
Domingo Muñoz-Esparza, Hyeyum Hailey Shin, Teddie L. Keller, Kyoko Ikeda, Robert D. Sharman, Matthias Steiner, Jeff Rawdon, and Gary Pokodner

Abstract

Takeoff and landing maneuvers can be particularly hazardous at airports surrounded by complex terrain. To address this, the Federal Aviation Administration has developed a Precipitous Terrain classification, as a way to impose more restrictive terrain clearances in the vicinity of complex terrain and to mitigate possible altimeter errors and pilot control problems experienced while executing instrument approach procedures. The current Precipitous Point Value (PPV) algorithm relies on the terrain characteristics within a local area of 2 NM, and is therefore static in time. In this work, we investigate the role of meteorological effects leading to potential aviation hazards over complex terrain, namely turbulence, altimeter setting errors and density altitude deviations. To that end, we combine observations with high-resolution numerical weather forecasts within a 2° × 2° region over the Rocky Mountains in Colorado, containing three airports that are surrounded by Precipitous Terrain. Both available turbulence reports and model’s turbulence forecasts show little correlation with the PPV algorithm for the region analyzed, indicating that the static terrain characteristics cannot generally be used to reliably capture hazardous low-level turbulence events. Altimeter setting errors and density altitude effects are also found to be only very weakly correlated with the PPV algorithm. Altimeter setting errors contribute to hazardous conditions mainly during cold seasons, driven by synoptic weather systems, while density altitude effects are on the contrary predominantly present during the spring and summer months, and follow a very well-marked diurnal evolution modulated by surface radiative effects. These findings demonstrate the effectiveness of high-resolution weather forecast information in determining aviation-relevant hazardous conditions over complex terrain.

Open access
Xiaoxiong Lu, Qinglan Li, Wei Zhao, Aiguo Xiao, Guangxin Li, and Zifeng Yu

Abstract

Based on daily meteorological observation data in South China (SC) from 1967 to 2018, the spatiotemporal characteristics of the precipitation in SC over the past 52 years were studied. Only 8% of the stations showed a significant increase in annual rainfall, and there was no significant negative trend at any weather stations at a confidence level of 90%. Monthly rainfall showed the most significant decreasing and increasing trends in April and November, respectively. During the entire flooding season from April to September, the monthly rainfall at the weather stations in the coastal areas showed almost no significant change. The annual rainfall gradually decreased toward the inland area with the central and coastal areas of Guangdong Province as the high-value rainfall center. By using the empirical orthogonal function decomposition method, it was found that the two main monthly rainfall modes had strong annual signals. The first modal spatial distribution was basically consistent with the average annual rainfall distribution. Based on the environmental background analysis, it was found that during the flooding season, the main water vapor to SC was transported by the East Asian summer monsoon and the Indian summer monsoon. In late autumn and winter, the prevailing wind from northeastern China could not bring much water vapor to SC and led to little precipitation in these two seasons. The spatial distribution of precipitation in SC during summer was more consistent with the moisture flux divergence distribution of the bottom layer from 925 hPa to 1000 hPa, rather than the layer from 700 hPa to 1000 hPa.

Restricted access
Hilde Haakenstad, Øyvind Breivik, Birgitte R Furevik, Magnar Reistad, Patrik Bohlinger, and Ole Johan Aarnes

Abstract

NORA3 is a 15-year mesoscale-permitting atmospheric hindcast of the North Sea, the Norwegian Sea and the Barents Sea. With a horizontal resolution of 3 km, the nonhydrostatic numerical weather prediction model, HARMONIE-AROME, runs explicitly resolved deep convection and yields hindcast fields that realistically downscale the ERA5 reanalysis. The wind field is much improved compared to its host analysis, in particular in mountainous areas and along the improved grid-resolving coastlines. NORA3 also performs much better than the earlier hydrostatic hindcast NORA10 in complex terrain. NORA3 recreates the detailed structures of mesoscale cyclones with sharp gradients in wind and with clear frontal structures, which are particularly important when modeling polar lows. In extratropical windstorms, NORA3 exhibits significantly higher maximum wind speeds and compares much better with observed maximum wind than NORA10 and ERA5. The activity of the model is much more realistic than that of NORA10 and ERA5, both over the ocean and in complex terrain.

Restricted access
Eric P. Kelsey and Eve Cinquino

Abstract

We analyze how winter thaw events (TE; T>0°C) are changing on the summit of Mount Washington, New Hampshire using three metrics: the number of TE, number of thaw hours, and number of thaw degree-hours for temperature and dewpoint for winters from 1935-36 to 2019-20. The impact of temperature-only-TE and dewpoint-TE on snow depth are compared to quantify the different impacts of sensible-only and sensible-and-latent heating, respectively. Results reveal that temperature- and dewpoint-TE for all metrics increased at a statistically significant rate (p<0.05) over the full time periods studied for temperature (1935-1936 to 2019-2020) and dewpoint (1939-1940 to 2019-2020). Notably around 2000-2001, the positive trends increased for most variables, including dewpoint thaw degree-hours that increased by 82.11 degree-hours decade-1 during 2000-2020 – about five times faster than the 1939-2020 rate of 17.70 degree-hours decade-1. Furthermore, a clear upward shift occurred around 1990 in the lowest winter values of thaw hours and thaw degree-hours – winters now have a higher baseline amount of thaw than before 1990. Snow depth loss during dewpoint-TE (0.36 cm hr-1) occurred more than twice as fast as temperature-only-TE (0.14 cm hr-1). With winters projected to warm throughout the 21st century in the Northeastern US, it is expected that the trends in winter thaw events, and the sensible and latent energy they bring, will continue to rise and lead to more frequent winter flooding, fewer days of good quality snow for winter recreation, and changes in ecosystem function.

Restricted access
L. Mahrt, H. J. S Fernando, and O. Acevedo

Abstract

Our study examines the horizontal variation of the nocturnal surface air temperature by analyzing measurements from four contrasting networks of stations with generally modest topography. The horizontal extent of the networks ranges from 1 to 23 km. For each network, we investigate the general relationship of the horizontal variation of temperature to the wind speed, wind direction, near-surface stratification, and turbulence. As an example, the horizontal variation of temperature generally increases with increasing stratification and decreases with increasing wind speed. However, quantitative details vary significantly between the networks. Needed changes of the observational strategy are discussed.

Restricted access
Natalia Odnoletkova and Tadeusz W. Patzek

Abstract

We have analyzed the long-term temperature trends and extreme temperature events in Saudi Arabia between 1979 and 2019. Our study relies on high-resolution, consistent, and complete ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We evaluated linear trends in several climate descriptors, including temperature, dewpoint temperature, thermal comfort, and extreme event indices. Previous works on this topic used data from weather station observations over limited time intervals and did not include temperature data for recent years. The years 2010–19 have been the warmest decade ever observed by instrumental temperature monitoring and are the eight warmest years on record. Therefore, the earlier results may be incomplete, and their results may no longer be relevant. Our findings indicate that, over the past four decades, Saudi Arabia has warmed up at a rate that is 50% higher than the rest of the landmass in the Northern Hemisphere. Moreover, moisture content of the air has significantly increased in the region. The increases of temperature and humidity have resulted in the soaring of dewpoint temperature and thermal discomfort across the country. These increases are more substantial during summers, which are already very hot relative to winters. Such changes may be dangerous to people over vast areas of the country. If the current trend persists into the future, human survival in the region will be impossible without continuous access to air conditioning.

Open access
Seung-Hee Ham, Seiji Kato, Fred G. Rose, Norman G. Loeb, Kuan-Man Xu, Tyler Thorsen, Michael G. Bosilovich, Sunny Sun-Mack, Yan Chen, and Walter F. Miller

Abstract

Cloud macrophysical changes over the Pacific Ocean from 2007 to 2017 are examined by combining CALIPSO and CloudSat (CALCS) active-sensor measurements, and these are compared with MODIS passive-sensor observations. Both CALCS and MODIS capture well-known features of cloud changes over the Pacific associated with meteorological conditions during El Niño–Southern Oscillation (ENSO) events. For example, midcloud (cloud tops at 3–10 km) and high cloud (cloud tops at 10–18 km) amounts increase with relative humidity (RH) anomalies. However, a better correlation is obtained between CALCS cloud volume and RH anomalies, confirming more accurate CALCS cloud boundaries than MODIS. Both CALCS and MODIS show that low cloud (cloud tops at 0–3 km) amounts increase with EIS and decrease with SST over the eastern Pacific, consistent with earlier studies. It is also further shown that the low cloud amounts do not increase with positive EIS anomalies if SST anomalies are positive. While similar features are found between CALCS and MODIS low cloud anomalies, differences also exist. First, relative to CALCS, MODIS shows stronger anticorrelation between low and mid/high cloud anomalies over the central and western Pacific, which is largely due to the limitation in detecting overlapping clouds from passive MODIS measurements. Second, relative to CALCS, MODIS shows smaller impacts of mid- and high clouds on the low troposphere (<3 km). The differences are due to the underestimation of MODIS cloud layer thicknesses of mid- and high clouds.

Restricted access