Browse

You are looking at 11 - 20 of 9,671 items for :

  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All
Ying-Hui Jia, Fang-Fang Li, Kun Fang, Guang-Qian Wang, and Jun Qiu

Abstract

Recently, strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. On the basis of the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of an individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with sound pressure level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. A droplet smaller than 40 μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100 Hz (at 123.4 dB) or the SPL is greater than 117.4 dB (at 50 Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides a theoretical perspective of the acoustic effect on the microphysics of atmospheric clouds.

Restricted access
Hilde Haakenstad, Øyvind Breivik, Birgitte R. Furevik, Magnar Reistad, Patrik Bohlinger, and Ole Johan Aarnes

Abstract

The 3-km Norwegian Reanalysis (NORA3) is a 15-yr mesoscale-permitting atmospheric hindcast of the North Sea, the Norwegian Sea, and the Barents Sea. With a horizontal resolution of 3 km, the nonhydrostatic numerical weather prediction model HARMONIE–AROME runs explicitly resolved deep convection and yields hindcast fields that realistically downscale the ERA5 reanalysis. The wind field is much improved relative to its host analysis, in particular in mountainous areas and along the improved grid-resolving coastlines. NORA3 also performs much better than the earlier hydrostatic 10-km Norwegian Hindcast Archive (NORA10) in complex terrain. NORA3 recreates the detailed structures of mesoscale cyclones with sharp gradients in wind and with clear frontal structures, which are particularly important when modeling polar lows. In extratropical windstorms, NORA3 exhibits significantly higher maximum wind speeds and compares much better to observed maximum wind than do NORA10 and ERA5. The activity of the model is much more realistic than that of NORA10 and ERA5, both over the ocean and in complex terrain.

Open access
Domingo Muñoz-Esparza, Hyeyum Hailey Shin, Teddie L. Keller, Kyoko Ikeda, Robert D. Sharman, Matthias Steiner, Jeff Rawdon, and Gary Pokodner

Abstract

Takeoff and landing maneuvers can be particularly hazardous at airports surrounded by complex terrain. To address this situation, the Federal Aviation Administration has developed a precipitous terrain classification as a way to impose more restrictive terrain clearances in the vicinity of complex terrain and to mitigate possible altimeter errors and pilot control problems experienced while executing instrument approach procedures. The current precipitous point value (PPV) algorithm relies on the terrain characteristics within a local area of 2 n mi (3.7 km) in radius and is therefore static in time. In this work, we investigate the role of meteorological effects leading to potential aviation hazards over complex terrain, namely, turbulence, altimeter-setting errors, and density-altitude deviations. To that end, we combine observations with high-resolution numerical weather forecasts within a 2° × 2° region over the Rocky Mountains in Colorado containing three airports that are surrounded by precipitous terrain. Both available turbulence reports and model’s turbulence forecasts show little correlation with the PPV algorithm for the region analyzed, indicating that the static terrain characteristics cannot generally be used to reliably capture hazardous low-level turbulence events. Altimeter-setting errors and density-altitude effects are also found to be only very weakly correlated with the PPV algorithm. Altimeter-setting errors contribute to hazardous conditions mainly during cold seasons, driven by synoptic weather systems, whereas density-altitude effects are on the contrary predominantly present during the spring and summer months and follow a very well-marked diurnal evolution modulated by surface radiative effects. These findings demonstrate the effectiveness of high-resolution weather forecast information in determining aviation-relevant hazardous conditions over complex terrain.

Open access
Masaru Inatsu, Sho Kawazoe, and Masato Mori

Abstract

This paper showed the frequency of local-scale heavy winter snowfall in Hokkaido, Japan, its historical change, and its response to global warming using self-organizing maps (SOM) of synoptic-scale sea level pressure anomaly. Heavy snowfall days were here defined as days on which the snowfall exceeded 10 mm in water equivalent. It was shown that the SOMs can be grouped into three categories for heavy snowfall days: 1) a passage of extratropical cyclones to the south of Hokkaido, 2) a pressure pattern between the Siberian high and the Aleutian low, and 3) a low pressure anomaly just to the east of Hokkaido. Groups 1 and 2 were associated with heavy snowfall in Hiroo (located in southeastern Hokkaido) and in Iwamizawa (western Hokkaido), respectively, and heavy snowfall in Sapporo (western Hokkaido) was related to group 3. The large-ensemble historical simulation reproduced the observed increasing trend in group 2, and future projections revealed that group 2 was related to a negative phase of the western Pacific pattern and that the frequency of this group would increase in the future. Heavy snowfall days associated with SOM group 2 would also increase as a result of the increase in water vapor and preferable weather patterns in a globally warming climate, in contrast to the decrease of heavy snowfall days at other sites associated with SOM group 1.

Restricted access
Virendra P. Ghate, Maria P. Cadeddu, Xue Zheng, and Ewan O’Connor

Abstract

Marine stratocumulus clouds are intimately coupled to the turbulence in the boundary layer and drizzle is known to be ubiquitous within them. Six years of data collected at the Atmospheric Radiation Measurement’s (ARM) Eastern North Atlantic (ENA) site are utilized to characterize turbulence in the marine boundary layer and air motions below stratocumulus clouds. Profiles of variance of vertical velocity binned by wind direction (wdir) yielded that the boundary layer measurements are affected by the island when the wdir is between 90° and 310° (measured clockwise from the north from where air is coming). Data collected during the marine conditions (wdir < 90° or wdir > 310°) showed that the variance of vertical velocity was higher during the winter months than during the summer months because of higher cloudiness, wind speeds, and surface fluxes. During marine conditions the variance of vertical velocity and cloud fraction exhibited a distinct diurnal cycle with higher values during the nighttime than during the daytime. Detailed analysis of 32 cases of drizzling marine stratocumulus clouds showed that, for a similar amount of radiative cooling at the cloud top, within the subcloud layer 1) drizzle increasingly falls within downdrafts with increasing rain rates, 2) the strength of the downdrafts increases with increasing rain rates, and 3) the correlation between vertical air motion and rain rate is highest in the middle of the subcloud layer. The results presented herein have implications for climatological and model evaluation studies conducted at the ENA site, along with efforts to accurately represent drizzle–turbulence interactions in a range of atmospheric models.

Open access
Connor J. Chapman and Andrew M. Carleton

Abstract

Recent climatic studies for the dominantly rain-fed agricultural U.S. Corn Belt (CB) suggest an influence of land use/land cover (LULC) spatial differences on convective development, set within the larger-scale (synoptic) atmospheric conditions of pressure, winds, and vertical motion. However, the potential role of soil moisture (SM) in the LULC association with atmospheric humidity, horizontal wind and convective precipitation (CVP) has received more limited attention, mostly as modeling studies or empirical analyses for regions non-analogous to the CB. Accordingly, we determine the categorical associations between SM and the near-surface atmospheric humidity (q), with 850-hPa horizontal wind (V 850) at four representative CB locations for the nine warm-seasons of 2011-2019. Recurring configurations of joint SM-q-V 850 conducive to CVP are then identified and stratified into three phenologically distinct sub-seasons (early, middle, late).

We show that the stations show some statistical similarity in their SM-CVP relationships. Corn Belt CVP occurs preferentially with high humidity and southerly winds sometimes comprising a low-level jet (LLJ), particularly on early-season days having low SM and late-season days having high SM. Additionally, mid-season CVP days having weaker V 850 (i.e., non-LLJ) tend to be associated with medium SM values and high humidity. Conversely, late-season CVP days are frequently characterized by high values of both SM and humidity. These empirical results are likely explained by the inferred sensible and latent heat fluxes varying according to SM content and LULC type. They provide a basis for future mesoscale modeling studies of Corn Belt SM and CVP interactions to test the hypothesized physical processes.

Restricted access
Jing Chen, Ji Wang, Runsheng Lin, and Li Lu

Abstract

The outdoor events of the 2022 Winter Olympics and Paralympics will be held in the mountain areas of Beijing–Zhangjiakou, North China, where there is a complete reliance on artificial snow production owing to the dry and cold weather conditions. To assess how favorable the meteorological conditions are to snowmaking at the mountain venues, we reconstructed the daily wet-bulb temperature by adopting the thin-plate smoothing spline function method, and then we assessed the potential number of snowmaking days at eight weather stations (928–2098 m MSL) from October to the next April (i.e., the ski season) during the period 1978–2017. Results showed that artificial snow production would have been possible on 121 (±14) to 171 (±12) days on average at the stations with the increases of altitude, and the number of days decreased at rates of 4.3–5.1 days decade−1 across four decades of the study period. The cause of the decrease was the warming trend, which affected the number of days in low-altitude sites simultaneously, but the reduction was delayed with increased elevation. At monthly scale, the number of snowmaking days was robust in wintertime but reduced in other months of the ski season, particularly in March in more recent subperiods at high-altitude stations, which was determined by the increase in high values of daily mean wet-bulb temperature. Further improvements in assessing snowmaking conditions require detailed microclimatic studies to reduce the uncertainties caused by meteorological conditions as well as combination with model-based methods to determine potential future changes.

Restricted access
Eric P. Kelsey and Eve Cinquino

Abstract

We analyze how winter thaw events (TE; T > 0°C) are changing on the summit of Mount Washington, New Hampshire, using three metrics: the number of TE, number of thaw hours, and number of thaw degree-hours for temperature and dewpoint for winters from 1935/36 to 2019/20. The impact of temperature-only TE and dewpoint TE on snow depth are compared to quantify the different impacts of sensible-only heating and sensible-and-latent heating, respectively. Results reveal that temperature and dewpoint TE for all metrics increased at a statistically significant rate (p < 0.05) over the full time periods studied for temperature (1935/36–2019/20) and dewpoint (1939/40–2019/20). Notably, around 2000/01, the positive trends increased for most variables, including dewpoint-thaw degree-hours that increased by 82.11 degree-hours decade−1 during 2000–20, which is approximately 5 times as faster as the 1939–2020 rate of 17.70 degree-hours decade−1. Furthermore, a clear upward shift occurred around 1990 in the lowest winter values of thaw hours and thaw degree-hours—winters now have a higher baseline amount of thaw than before 1990. Snow-depth loss during dewpoint TE (0.36 cm h−1) occurred more than 2 times as fast as temperature-only TE (0.14 cm h−1). With winters projected to warm throughout the twenty-first century in the northeastern United States, it is expected that the trends in winter thaw events, and the sensible and latent energy that they bring, will continue to rise and lead to more frequent winter flooding, fewer days of good quality snow for winter recreation, and changes in ecosystem function.

Restricted access
Zunya Wang, Yanju Liu, Guofu Wang, and Qiang Zhang

Abstract

It is argued that the occurrence of cold events decreases under the background of global warming. However, from the mid-1990s to the early 2010s, northern China experienced a period of increasing occurrence of low temperature extremes (LTE). Factors responsible for this increase of LTE are investigated in this analysis. The results show that the interdecadal variation of the winter mean temperature over mid- and high-latitude Eurasia acts as an important thermal background. It is characterized by two dominant modes, the “consistent cooling” pattern and the “warm high-latitude Eurasia and cold midlatitude Eurasia” pattern, from the mid-1990s to the early 2010s. The two patterns jointly provide a cooling background for the increase of LTE in northern China. Meanwhile, though the interdecadal variation of the Arctic Oscillation (AO), Ural blocking (UB), and Siberian high (SH) are all highly correlated with the occurrence of LTE in northern China, the AO is found to play a dominant role. On one hand, the AO directly affects the occurrence of LTE because of its dynamic structure; on the other hand, it takes an indirect effect by affecting the intensity of UB and SH. Further analyses show that the winter temperature in mid- and high-latitude Eurasia and the AO are independent factors that influence the increase of LTE in northern China from the mid-1990s to the early 2010s.

Restricted access
Mengke Zhang, Jian Li, and Nina Li

Abstract

Fine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north–south orientation in Southwest China, are studied using station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, whereas long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.

Restricted access