Browse
Abstract
The role of convective-scale processes in a 1.67-km mesoscale model simulation of the rapid intensification (RI) of Hurricane Dennis (2005) is presented. The structure and evolution of inner-core precipitating areas during RI, the statistical properties of precipitation during times experiencing vigorous convection (termed convective bursts here) and how they differ from nonburst times, possible differences in convective bursts associated with RI and those not associated with RI, and the impacts of precipitation morphology on the vortex-scale structure and evolution during RI are all examined. The onset of RI is linked to an increase in the areal extent of convective precipitation in the inner core, while the inner-core stratiform precipitating area remains unchanged and the intensity increases only after RI has begun. RI is not tied to a dramatic increase in the number of convective bursts nor in the characteristics of the bursts, such as burst intensity. Rather, the immediate cause of RI is a significant increase in updraft mass flux, particularly in the lowest 1.5 km. This increase in updraft mass flux is accomplished primarily by updrafts on the order of 1–2 m s−1, representing the bulk of the vertical motion distribution. However, a period of enhanced updraft mass flux in the midlevels by moderate to strong (>5 m s−1) updrafts located inside the radius of maximum winds occurs ∼6 h prior to RI, indicating a synergistic relationship between convective bursts and the background secondary circulation prior to RI. This result supports the assertion that both buoyantly driven updrafts and slantwise near-neutral ascent are important features in eyewall structure, evolution, and intensification, including RI.
Abstract
The role of convective-scale processes in a 1.67-km mesoscale model simulation of the rapid intensification (RI) of Hurricane Dennis (2005) is presented. The structure and evolution of inner-core precipitating areas during RI, the statistical properties of precipitation during times experiencing vigorous convection (termed convective bursts here) and how they differ from nonburst times, possible differences in convective bursts associated with RI and those not associated with RI, and the impacts of precipitation morphology on the vortex-scale structure and evolution during RI are all examined. The onset of RI is linked to an increase in the areal extent of convective precipitation in the inner core, while the inner-core stratiform precipitating area remains unchanged and the intensity increases only after RI has begun. RI is not tied to a dramatic increase in the number of convective bursts nor in the characteristics of the bursts, such as burst intensity. Rather, the immediate cause of RI is a significant increase in updraft mass flux, particularly in the lowest 1.5 km. This increase in updraft mass flux is accomplished primarily by updrafts on the order of 1–2 m s−1, representing the bulk of the vertical motion distribution. However, a period of enhanced updraft mass flux in the midlevels by moderate to strong (>5 m s−1) updrafts located inside the radius of maximum winds occurs ∼6 h prior to RI, indicating a synergistic relationship between convective bursts and the background secondary circulation prior to RI. This result supports the assertion that both buoyantly driven updrafts and slantwise near-neutral ascent are important features in eyewall structure, evolution, and intensification, including RI.
Abstract
The previous study of helicity, CAPE, and shear in Hurricane Bonnie (1998) was extended to all eight tropical cyclones sampled by NASA during the Convection and Moisture Experiments (CAMEX). Storms were categorized as having large or small ambient vertical wind shear, with 10 m s−1 as the dividing line. In strongly sheared storms, the downshear mean helicity exceeded the upshear mean by a factor of 4. As in the previous study, the helicity differences resulted directly from the tropical cyclone response to ambient shear, with enhanced in-up-out flow and veering of the wind with height present downshear. CAPE in strongly sheared storms was 60% larger downshear. Mean inflow near the surface and the depth of the inflow layer each were 4 times larger downshear. At more than 30% of observation points outside the 100-km radius in the downshear right quadrant, midlatitude empirical parameters indicated a strong likelihood of supercells. No such points existed upshear in highly sheared storms. Much smaller upshear–downshear differences and little likelihood of severe cells occurred in storms with ambient wind shear below 10 m s−1. In addition to these azimuthal asymmetries, highly sheared storms produced 30% larger area-averaged CAPE and double the area-averaged helicity versus relatively unsheared storms. The vortex-scale increase in these quantities lessens the negative impact of large vertical wind shear.
Abstract
The previous study of helicity, CAPE, and shear in Hurricane Bonnie (1998) was extended to all eight tropical cyclones sampled by NASA during the Convection and Moisture Experiments (CAMEX). Storms were categorized as having large or small ambient vertical wind shear, with 10 m s−1 as the dividing line. In strongly sheared storms, the downshear mean helicity exceeded the upshear mean by a factor of 4. As in the previous study, the helicity differences resulted directly from the tropical cyclone response to ambient shear, with enhanced in-up-out flow and veering of the wind with height present downshear. CAPE in strongly sheared storms was 60% larger downshear. Mean inflow near the surface and the depth of the inflow layer each were 4 times larger downshear. At more than 30% of observation points outside the 100-km radius in the downshear right quadrant, midlatitude empirical parameters indicated a strong likelihood of supercells. No such points existed upshear in highly sheared storms. Much smaller upshear–downshear differences and little likelihood of severe cells occurred in storms with ambient wind shear below 10 m s−1. In addition to these azimuthal asymmetries, highly sheared storms produced 30% larger area-averaged CAPE and double the area-averaged helicity versus relatively unsheared storms. The vortex-scale increase in these quantities lessens the negative impact of large vertical wind shear.
Abstract
The African Monsoon Multidisciplinary Analyses (AMMA) experiment and its downstream NASA extension, NAMMA, provide an unprecedented detailed look at the vertical structure of consecutive African easterly waves. During August and September 2006, seven easterly waves passed through the NAMMA domain: two waves developed into Tropical Cyclones Debby and Helene, two waves did not develop, and three waves were questionable in their role in the development of Ernesto, Florence, and Gordon. NCEP Global Data Assimilation System (GDAS) analyses are used to describe the track of both the vorticity maxima and midlevel wave trough associated with each of the seven easterly waves. Dropsonde data from NAMMA research flights are used to describe the observed wind structure and as a tool to evaluate the accuracy of the GDAS to resolve the structure of the wave. Finally, satellite data are used to identify the relationship between convection and the organization of the wind structure. Results support a necessary distinction between the large-scale easterly wave trough and smaller-scale vorticity centers within the wave. An important wave-to-wave variability is observed: for NAMMA waves, those waves that have a characteristically high-amplitude wave trough and well-defined low-level circulations (well organized) may contain less rainfall, do not necessarily develop, and are well resolved in the analysis, whereas low-amplitude (weakly organized) NAMMA waves may have stronger vorticity centers and large persistent raining areas and may be more likely to develop, but are not well resolved in the analysis.
Abstract
The African Monsoon Multidisciplinary Analyses (AMMA) experiment and its downstream NASA extension, NAMMA, provide an unprecedented detailed look at the vertical structure of consecutive African easterly waves. During August and September 2006, seven easterly waves passed through the NAMMA domain: two waves developed into Tropical Cyclones Debby and Helene, two waves did not develop, and three waves were questionable in their role in the development of Ernesto, Florence, and Gordon. NCEP Global Data Assimilation System (GDAS) analyses are used to describe the track of both the vorticity maxima and midlevel wave trough associated with each of the seven easterly waves. Dropsonde data from NAMMA research flights are used to describe the observed wind structure and as a tool to evaluate the accuracy of the GDAS to resolve the structure of the wave. Finally, satellite data are used to identify the relationship between convection and the organization of the wind structure. Results support a necessary distinction between the large-scale easterly wave trough and smaller-scale vorticity centers within the wave. An important wave-to-wave variability is observed: for NAMMA waves, those waves that have a characteristically high-amplitude wave trough and well-defined low-level circulations (well organized) may contain less rainfall, do not necessarily develop, and are well resolved in the analysis, whereas low-amplitude (weakly organized) NAMMA waves may have stronger vorticity centers and large persistent raining areas and may be more likely to develop, but are not well resolved in the analysis.
Abstract
This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA Goddard Earth Observing System, version 5 (GEOS-5), is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertical (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20–30 km can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective.
Abstract
This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA Goddard Earth Observing System, version 5 (GEOS-5), is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertical (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20–30 km can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective.
Abstract
Anvils produced by vigorous tropical convection contribute significantly to the earth’s radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the −38°C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo.
Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25°N to 11°S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s−1. The cumulative horizontal distance of in-cloud sampling at temperatures of −20°C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the −20°C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 μm in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the −38°C levels, and acceleration of the updrafts at mid- and upper levels such that velocities exceed 5–7 m s−1.
Abstract
Anvils produced by vigorous tropical convection contribute significantly to the earth’s radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the −38°C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo.
Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25°N to 11°S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s−1. The cumulative horizontal distance of in-cloud sampling at temperatures of −20°C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the −20°C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 μm in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the −38°C levels, and acceleration of the updrafts at mid- and upper levels such that velocities exceed 5–7 m s−1.
Abstract
Accurate forecasting of a hurricane’s intensity changes near its landfall is of great importance in making an effective hurricane warning. This study uses airborne Doppler radar data collected during the NASA Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 to examine the impact of airborne radar observations on the short-range numerical simulation of hurricane track and intensity changes. A series of numerical experiments is conducted for Hurricane Dennis (2005) to study its intensity changes near a landfall. Both radar reflectivity and radial velocity–derived wind fields are assimilated into the Weather Research and Forecasting (WRF) model with its three-dimensional variational data assimilation (3DVAR) system. Numerical results indicate that the radar data assimilation has greatly improved the simulated structure and intensity changes of Hurricane Dennis. Specifically, the assimilation of radar reflectivity data shows a notable influence on the thermal and hydrometeor structures of the initial vortex and the precipitation structure in the subsequent forecasts, although its impact on the intensity and track forecasts is relatively small. In contrast, assimilation of radar wind data results in moderate improvement in the storm-track forecast and significant improvement in the intensity and precipitation forecasts of Hurricane Dennis. The hurricane landfall, intensification, and weakening during the simulation period are well captured by assimilating both radar reflectivity and wind data.
Abstract
Accurate forecasting of a hurricane’s intensity changes near its landfall is of great importance in making an effective hurricane warning. This study uses airborne Doppler radar data collected during the NASA Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 to examine the impact of airborne radar observations on the short-range numerical simulation of hurricane track and intensity changes. A series of numerical experiments is conducted for Hurricane Dennis (2005) to study its intensity changes near a landfall. Both radar reflectivity and radial velocity–derived wind fields are assimilated into the Weather Research and Forecasting (WRF) model with its three-dimensional variational data assimilation (3DVAR) system. Numerical results indicate that the radar data assimilation has greatly improved the simulated structure and intensity changes of Hurricane Dennis. Specifically, the assimilation of radar reflectivity data shows a notable influence on the thermal and hydrometeor structures of the initial vortex and the precipitation structure in the subsequent forecasts, although its impact on the intensity and track forecasts is relatively small. In contrast, assimilation of radar wind data results in moderate improvement in the storm-track forecast and significant improvement in the intensity and precipitation forecasts of Hurricane Dennis. The hurricane landfall, intensification, and weakening during the simulation period are well captured by assimilating both radar reflectivity and wind data.
Abstract
This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the balanced vortex model and, in particular, on the associated transverse circulation equation and the geopotential tendency equation. These second-order partial differential equations contain the diabatic forcing and three spatially varying coefficients: the static stability A, the baroclinity B, and the inertial stability C. Thus, the transverse circulation and the temperature tendency in a tropical vortex depend not only on the diabatic forcing but also on the spatial distributions of A, B, and C. Experience shows that the large radial variations of C are typically the most important effect. Under certain simplifying assumptions as to the vertical structure of the diabatic forcing and the spatial variability of A, B, and C, the transverse circulation equation and the geopotential tendency equation can be solved via separation of variables. The resulting radial structure equations retain the dynamically important radial variation of C and can be solved in terms of Green’s functions. These analytical solutions show that the vortex response to a delta function in the diabatic heating depends critically on whether the heating occurs in the low-inertial-stability region outside the radius of maximum wind or in the high-inertial-stability region inside the radius of maximum wind. This result suggests that rapid intensification is favored for storms that have at least some of the eyewall convection inside the radius of maximum wind. The development of an eye partially removes diabatic heating from the high-inertial-stability region of the storm center; however, rapid intensification may continue if the eyewall heating continues to become more efficient. As the warm core matures and static stability increases over the inner core, conditions there become less favorable for deep upright convection and the storm tends to approach a steady state.
Abstract
This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the balanced vortex model and, in particular, on the associated transverse circulation equation and the geopotential tendency equation. These second-order partial differential equations contain the diabatic forcing and three spatially varying coefficients: the static stability A, the baroclinity B, and the inertial stability C. Thus, the transverse circulation and the temperature tendency in a tropical vortex depend not only on the diabatic forcing but also on the spatial distributions of A, B, and C. Experience shows that the large radial variations of C are typically the most important effect. Under certain simplifying assumptions as to the vertical structure of the diabatic forcing and the spatial variability of A, B, and C, the transverse circulation equation and the geopotential tendency equation can be solved via separation of variables. The resulting radial structure equations retain the dynamically important radial variation of C and can be solved in terms of Green’s functions. These analytical solutions show that the vortex response to a delta function in the diabatic heating depends critically on whether the heating occurs in the low-inertial-stability region outside the radius of maximum wind or in the high-inertial-stability region inside the radius of maximum wind. This result suggests that rapid intensification is favored for storms that have at least some of the eyewall convection inside the radius of maximum wind. The development of an eye partially removes diabatic heating from the high-inertial-stability region of the storm center; however, rapid intensification may continue if the eyewall heating continues to become more efficient. As the warm core matures and static stability increases over the inner core, conditions there become less favorable for deep upright convection and the storm tends to approach a steady state.
Abstract
Vortex–Rossby waves (VRWs) and inertial gravity waves (IGWs) have been proposed to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones (TCs). In this study, a theory for mixed vortex–Rossby–inertia–gravity waves (VRIGWs), together with VRWs and IGWs, is developed by including both rotational and divergent flows in a shallow-water equations model. A cloud-resolving TC simulation is used to help simplify the radial structure equation for linearized perturbations and then transform it to a Bessel equation with constant coefficients. A cubic frequency equation describing the three groups of allowable (radially discrete) waves is eventually obtained. It is shown that low-frequency VRWs and high-frequency IGWs may coexist, but with separable dispersion characteristics, in the eye and outer regions of TCs, whereas mixed VRIGWs with inseparable dispersion and wave instability properties tend to occur in the eyewall. The mixed-wave instability, with shorter waves growing faster than longer waves, appears to explain the generation of polygonal eyewalls and multiple vortices with intense rotation and divergence in TCs. Results show that high-frequency IGWs would propagate at half their typical speeds in the inner regions with more radial “standing” structures. Moreover, all the propagating waves appear in the forms of spiral bands with different intensities as their radial widths shrink in time, suggesting that some spiral rainbands in TCs may result from the radial differential displacements of azimuthally propagating perturbations.
Abstract
Vortex–Rossby waves (VRWs) and inertial gravity waves (IGWs) have been proposed to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones (TCs). In this study, a theory for mixed vortex–Rossby–inertia–gravity waves (VRIGWs), together with VRWs and IGWs, is developed by including both rotational and divergent flows in a shallow-water equations model. A cloud-resolving TC simulation is used to help simplify the radial structure equation for linearized perturbations and then transform it to a Bessel equation with constant coefficients. A cubic frequency equation describing the three groups of allowable (radially discrete) waves is eventually obtained. It is shown that low-frequency VRWs and high-frequency IGWs may coexist, but with separable dispersion characteristics, in the eye and outer regions of TCs, whereas mixed VRIGWs with inseparable dispersion and wave instability properties tend to occur in the eyewall. The mixed-wave instability, with shorter waves growing faster than longer waves, appears to explain the generation of polygonal eyewalls and multiple vortices with intense rotation and divergence in TCs. Results show that high-frequency IGWs would propagate at half their typical speeds in the inner regions with more radial “standing” structures. Moreover, all the propagating waves appear in the forms of spiral bands with different intensities as their radial widths shrink in time, suggesting that some spiral rainbands in TCs may result from the radial differential displacements of azimuthally propagating perturbations.
Abstract
Two successive African easterly waves (AEWs) from August 2006 are analyzed utilizing observational data, the European Centre for Medium-Range Weather Forecasts reanalysis, and output from the National Center for Atmospheric Research–National Oceanic and Atmospheric Administration Weather Research and Forecasting model (WRF) to understand why the first wave does not develop over the eastern Atlantic while the second wave does. The first AEW eventually forms Hurricane Ernesto over the Caribbean Sea, but genesis does not occur over the eastern Atlantic. The second wave, although weaker than the first over land, leaves the West African coast and quickly intensifies into Tropical Storm Debby west of the Cape Verde islands. This study shows that the environmental conditions associated with the first AEW’s passage inhibited development. These conditions include strong low- and midtropospheric vertical wind shear owing to a stronger than normal African easterly jet, lower than normal relative humidity, and increased atmospheric stability. All of these are characteristics of an intensification of the Saharan air layer (SAL), or SAL outbreak, over the eastern Atlantic. The environmental conditions were more favorable for genesis 2½ days later when the second wave left the African coast. Additionally, a strong low-level southwesterly surge develops over the eastern North Atlantic in the wake of the passage of the first wave. This westerly surge is associated with an enhancement of the low-level westerly flow, low-level cyclonic vorticity, large-scale low-level wind convergence, and vertical motion conducive for development over the region. While the initial westerly surge is likely associated with the passage of the first wave, over time (i.e., by 1600 UTC 20 August 2006) the development of the second wave becomes influential in maintaining the low-level westerly surge. Although SAL outbreaks are also associated with the addition of dust, the different cyclogenesis histories of the two systems are simulated without including dust in the regional model.
Abstract
Two successive African easterly waves (AEWs) from August 2006 are analyzed utilizing observational data, the European Centre for Medium-Range Weather Forecasts reanalysis, and output from the National Center for Atmospheric Research–National Oceanic and Atmospheric Administration Weather Research and Forecasting model (WRF) to understand why the first wave does not develop over the eastern Atlantic while the second wave does. The first AEW eventually forms Hurricane Ernesto over the Caribbean Sea, but genesis does not occur over the eastern Atlantic. The second wave, although weaker than the first over land, leaves the West African coast and quickly intensifies into Tropical Storm Debby west of the Cape Verde islands. This study shows that the environmental conditions associated with the first AEW’s passage inhibited development. These conditions include strong low- and midtropospheric vertical wind shear owing to a stronger than normal African easterly jet, lower than normal relative humidity, and increased atmospheric stability. All of these are characteristics of an intensification of the Saharan air layer (SAL), or SAL outbreak, over the eastern Atlantic. The environmental conditions were more favorable for genesis 2½ days later when the second wave left the African coast. Additionally, a strong low-level southwesterly surge develops over the eastern North Atlantic in the wake of the passage of the first wave. This westerly surge is associated with an enhancement of the low-level westerly flow, low-level cyclonic vorticity, large-scale low-level wind convergence, and vertical motion conducive for development over the region. While the initial westerly surge is likely associated with the passage of the first wave, over time (i.e., by 1600 UTC 20 August 2006) the development of the second wave becomes influential in maintaining the low-level westerly surge. Although SAL outbreaks are also associated with the addition of dust, the different cyclogenesis histories of the two systems are simulated without including dust in the regional model.
Abstract
The West African perturbation that subsequently evolved into Hurricane Helene (2006) during NASA’s African Monsoon Multidisciplinary Analysis (NAMMA), 15 August–14 September 2006, and AMMA’s third special observing period (SOP-3), 15–29 September 2006, has been simulated with the nonhydrostatic Méso-NH model using parameterized convection. The simulated disturbance evolved over West Africa and the adjacent eastern tropical Atlantic through interactions between different processes at the convective scale, mesoscale, and synoptic scale. The aim of this paper is to quantify the energetics of the simulated disturbance. A set of energy equations is first developed in the hydrostatic case to solve the limitations of Lorenz’s analysis when applied to a finite domain. It is shown that this approach is also valid in the compressible and in the anelastic case in order to apply it to the Méso-NH results. Application to the simulated pre-Helene disturbance allows one to determine the most important terms in these equations. These simplifications are taken into account to derive an energy cycle including barotropic and baroclinic conversions of eddy kinetic energy. The development of the simulated system was found to result from barotropic–baroclinic growth over West Africa and barotropic growth over the tropical eastern Atlantic. It is suggested that most of these energy conversions were the result of an adjustment of the wind field in response to the pressure decrease, presumably caused by convective activity.
Abstract
The West African perturbation that subsequently evolved into Hurricane Helene (2006) during NASA’s African Monsoon Multidisciplinary Analysis (NAMMA), 15 August–14 September 2006, and AMMA’s third special observing period (SOP-3), 15–29 September 2006, has been simulated with the nonhydrostatic Méso-NH model using parameterized convection. The simulated disturbance evolved over West Africa and the adjacent eastern tropical Atlantic through interactions between different processes at the convective scale, mesoscale, and synoptic scale. The aim of this paper is to quantify the energetics of the simulated disturbance. A set of energy equations is first developed in the hydrostatic case to solve the limitations of Lorenz’s analysis when applied to a finite domain. It is shown that this approach is also valid in the compressible and in the anelastic case in order to apply it to the Méso-NH results. Application to the simulated pre-Helene disturbance allows one to determine the most important terms in these equations. These simplifications are taken into account to derive an energy cycle including barotropic and baroclinic conversions of eddy kinetic energy. The development of the simulated system was found to result from barotropic–baroclinic growth over West Africa and barotropic growth over the tropical eastern Atlantic. It is suggested that most of these energy conversions were the result of an adjustment of the wind field in response to the pressure decrease, presumably caused by convective activity.