Browse

You are looking at 21 - 25 of 25 items for :

  • Indian Ocean Climate x
  • Refine by Access: All Content x
Clear All
Roxana C. Wajsowicz

Abstract

Whether seasonally phased-locked persistence and predictability barriers, similar to the boreal spring barriers found for El Niño–Southern Oscillation (ENSO), exist for the tropical Indian Ocean sector climate is investigated using observations and hindcasts from two coupled ocean–atmosphere dynamical ensemble forecast systems: the National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) for 1990–2003, and the NASA Seasonal-to-Interannual Prediction Project (NSIPP) system for 1993–2002. The potential predictability of the climate is also assessed under the “perfect model/ensemble” assumption.

Lagged correlations of the indices calculated over the east and west poles of the Indian Ocean dipole mode (IDM) index show weak sea surface temperature anomaly (SSTA) persistence barriers in boreal spring at both poles, but the major decline in correlation at the east pole occurs in boreal midwinter for all start months with an almost immediate recovery, albeit negative correlations, until summer approaches. Processes responsible for the change in sign of SSTAs associated with a major IDM event effect a similar change on much weaker SSTAs. At the west pole, a major decline occurs at the end of boreal summer for fall and winter starts when the thermocline deepens with the seasonal cycle and coupling between the ocean and atmosphere is weak.

A decline in skillful prediction of SSTA at the east pole over boreal winter is also found in the hindcasts, but the relatively large thermocline depth anomalies are skillfully predicted through this time and skill in SSTA prediction returns. A predictability barrier at the onset of the boreal summer monsoon is found at both IDM poles with some return of skill in late fall. Potential predictability calculations suggest that this barrier may be overcome at the west pole with improvements to the forecast systems, but not at the east pole for forecasts initiated in boreal winter unless the ocean is initialized with a memory of fall conditions.

Full access
Clémentde Boyer Montégut
,
Jérôme Vialard
,
S. S. C. Shenoi
,
D. Shankar
,
Fabien Durand
,
Christian Ethé
, and
Gurvan Madec

Abstract

A global ocean general circulation model (OGCM) is used to investigate the mixed layer heat budget of the northern Indian Ocean (NIO). The model is validated against observations and shows fairly good agreement with mixed layer depth data in the NIO. The NIO has been separated into three subbasins: the western Arabian Sea (AS), the eastern AS, and the Bay of Bengal (BoB). This study reveals strong differences between the western and eastern AS heat budget, while the latter basin has similarities with the BoB. Interesting new results on seasonal time scales are shown. The penetration of solar heat flux needs to be taken into account for two reasons. First, an average of 28 W m−2 is lost beneath the mixed layer over the year. Second, the penetration of solar heat flux tends to reduce the effect of solar heat flux on the SST seasonal cycle in the AS because the seasons of strongest flux are also seasons with a thin mixed layer. This enhances the control of SST seasonal variability by latent heat flux. The impact of salinity on SST variability is demonstrated. Salinity stratification plays a clear role in maintaining a high winter SST in the BoB and eastern AS while not in the western AS. The presence of freshwater near the surface allows heat storage below the surface layer that can later be recovered by entrainment warming during winter cooling (with a winter contribution of +2.1°C in the BoB). On an interannual time scale, the eastern AS and BoB are strongly controlled by the winds through the latent heat flux anomalies. In the western AS, vertical processes, as well as horizontal advection, contribute significantly to SST interannual variability, and the wind is not the only factor controlling the heat flux forcing.

Full access
Suryachandra A. Rao
,
Sebastien Masson
,
Jing-Jia Luo
,
Swadhin K. Behera
, and
Toshio Yamagata

Abstract

Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations.

A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.

Full access
Tommy G. Jensen

Abstract

Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.

Full access
Gary Meyers
,
Peter McIntosh
,
Lidia Pigot
, and
Mike Pook

Abstract

The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.

Full access