Browse

You are looking at 21 - 22 of 22 items for :

  • Process-Oriented Model Diagnostics x
  • Refine by Access: All Content x
Clear All
James F. Booth
,
Young-Oh Kwon
,
Stanley Ko
,
R. Justin Small
, and
Rym Msadek

Abstract

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.

Full access
Stephanie A. Henderson
,
Eric D. Maloney
, and
Seok-Woo Son

Abstract

Teleconnection patterns associated with the Madden–Julian oscillation (MJO) significantly alter extratropical circulations, impacting weather and climate phenomena such as blocking, monsoons, the North Atlantic Oscillation, and the Pacific–North American pattern. However, the MJO has been extremely difficult to simulate in many general circulation models (GCMs), and many GCMs contain large biases in the background flow, presenting challenges to the simulation of MJO teleconnection patterns and associated extratropical impacts. In this study, the database from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used to assess the impact of model MJO and basic state quality on MJO teleconnection pattern quality, and a simple dry linear baroclinic model is employed to understand the results. Even in GCMs assessed to have good MJOs, large biases in the MJO teleconnection patterns are produced as a result of errors in the zonal extent of the Pacific subtropical jet. The horizontal structure of Indo-Pacific MJO heating in good MJO models is found to have modest impacts on the teleconnection pattern skill, in agreement with previous studies that have demonstrated little sensitivity to the location of tropical heating near the subtropical jet. However, MJO heating east of the date line can alter the teleconnection pathways over North America. Results show that GCMs with poor basic states can have equally low skill in reproducing the MJO teleconnection patterns as GCMs with poor MJO quality, suggesting that both the basic state and the MJO must be well represented in order to reproduce the correct teleconnection patterns.

Full access