Browse
Abstract
Instantaneous surface rain rate estimates from the Global Precipitation Measurement (GPM) mission’s Dual-Frequency Precipitation Radar (DPR) and combined DPR and multifrequency microwave imager (CMB) version-5 products are compared to those from the Met Office Radarnet 4 system’s Great Britain and Ireland (GBI) radar composite product. The spaceborne and ground-based rainfall products are collocated spatially and temporally and compared at 5- and 25-km resolutions over GBI during a 3-yr period (from May 2014 to April 2017). The comparison results are evaluated as a function of both the intensity and variability of precipitation within the DPR field of view and are stratified spatially and seasonally. CMB and DPR products underestimate rain rates with respect to the Radarnet product by 21% and 31%, respectively, when considering 25-km resolution data taken within 75 km of a ground-based radar. Large variability in the discrepancies between spaceborne and ground-based rain rate estimates is the result of limitations of both systems and random errors in the collocation of their measurements. The Radarnet retrieval is affected by issues with measuring the vertical extent of precipitation at far ranges, while the GPM system struggles in properly quantifying orographic precipitation. Part of the underestimation by the GPM products appears to be a consequence of an erroneous DPR clutter identification in the presence of low freezing levels. Both products are susceptible to seasonal variations in performance and decreases in precision with increased levels of heterogeneity within the instruments’ field of view.
Abstract
Instantaneous surface rain rate estimates from the Global Precipitation Measurement (GPM) mission’s Dual-Frequency Precipitation Radar (DPR) and combined DPR and multifrequency microwave imager (CMB) version-5 products are compared to those from the Met Office Radarnet 4 system’s Great Britain and Ireland (GBI) radar composite product. The spaceborne and ground-based rainfall products are collocated spatially and temporally and compared at 5- and 25-km resolutions over GBI during a 3-yr period (from May 2014 to April 2017). The comparison results are evaluated as a function of both the intensity and variability of precipitation within the DPR field of view and are stratified spatially and seasonally. CMB and DPR products underestimate rain rates with respect to the Radarnet product by 21% and 31%, respectively, when considering 25-km resolution data taken within 75 km of a ground-based radar. Large variability in the discrepancies between spaceborne and ground-based rain rate estimates is the result of limitations of both systems and random errors in the collocation of their measurements. The Radarnet retrieval is affected by issues with measuring the vertical extent of precipitation at far ranges, while the GPM system struggles in properly quantifying orographic precipitation. Part of the underestimation by the GPM products appears to be a consequence of an erroneous DPR clutter identification in the presence of low freezing levels. Both products are susceptible to seasonal variations in performance and decreases in precision with increased levels of heterogeneity within the instruments’ field of view.
Abstract
The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years, providing precipitation products over the globe, including oceans and remote areas where ground-based precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR products over a key climatic region with complex orography such as the Italian territory. The performances of the DPR precipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as reference. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS product and ground reference data. The most relevant improvement of the DPR products’ performance was found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores in comparison with ground radars are mean error (ME) = −0.44 mm h−1, RMSE = 3.57 mm h−1, and fractional standard error (FSE) = 142%, with the POD = 65% and FAR = 1% for rainfall above 0.5 mm h−1.
Abstract
The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years, providing precipitation products over the globe, including oceans and remote areas where ground-based precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR products over a key climatic region with complex orography such as the Italian territory. The performances of the DPR precipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as reference. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS product and ground reference data. The most relevant improvement of the DPR products’ performance was found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores in comparison with ground radars are mean error (ME) = −0.44 mm h−1, RMSE = 3.57 mm h−1, and fractional standard error (FSE) = 142%, with the POD = 65% and FAR = 1% for rainfall above 0.5 mm h−1.
Abstract
Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.
Abstract
Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.
Abstract
A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d 0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d 0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.
Abstract
A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d 0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d 0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.
Abstract
The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.
Abstract
The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.
Abstract
The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.
Abstract
The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.