Browse

You are looking at 21 - 30 of 40,578 items for :

  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Han Li
,
Ziyu Yan
,
Melinda Peng
,
Xuyang Ge
, and
Zhuo Wang

Abstract

Tropical cyclones (TCs) accompanied by an upper tropospheric cold low (CL) can experience unusual tracks. Idealized simulations resembling observed scenarios are designed in this study to investigate the impacts of a CL on TC tracks. The sensitivity of the TC motion to its location relative to the CL is examined. The results show that a TC follows a counterclockwise semicircle track if initially located east of a CL while a TC experiences a small southward looping track, followed by a sudden northward turn if initially located west of a CL. A TC on the west side experiences opposing CL and β steering, while they act in the same direction when a TC is on the east side of CL.

The steering flow analyses show that the steering vector is dominated by upper-level flow induced by the CL at early stage. The influence of CL extends downward and contributes to the lower-tropospheric asymmetric flow pattern of TC. As these two systems approach, the TC divergent outflow erodes the CL. The CL circulation is deformed and eventually merged with the TC when they are close. Since the erosion of CL, the TC motion is primarily related to β gyres at later stage.

The sensitivity of TC motion to the CL depth is also examined. TCs located west of a CL experience a westward track if the CL is shallow. In contrast, TCs initially located east of a CL all take a smooth track irrespective of the CL depth, and the CL depth mainly influences the track curvature and the TC translation speed.

Restricted access
Paul J. Roebber
,
Kevin M. Grise
, and
John R. Gyakum

Abstract

This study examines extratropical cyclone tracks, central pressure, and maximum intensification rates from a widely used automated cyclone tracking scheme and compares them with the manual tracking of five well-known North Atlantic cyclones whose histories are available in the refereed literature. The automated tracking scheme is applied to sea level pressure data from four different reanalyses of varying levels of sophistication to test the sensitivity of the results to input data resolution and quality. Further, we test the tracking scheme using lower-tropospheric vorticity obtained from the most recent reanalysis (ERA5) for four of these cyclone events. Substantial discrepancies in cyclone position, intensity, and maximum intensification rates exist between the manual tracking and the automated tracking and are not eliminated by using higher-resolution reanalyses or by “turning off” the spatial smoothing feature of the automated tracking scheme (needed to reduce spurious cyclone detections). The results point to a particular problem in detecting weaker and earlier stage cyclones and confirm findings from studies that have examined a broad range of cyclone tracking schemes for a range of reanalyses. Notably, this early cyclone stage often involves a smaller-scale secondary cyclogenesis or cyclone wave, which are detected by the automated scheme only after subsequent growth in the ensuing 6–12 h. It is known that these early stages are critical for a comprehensive understanding of rapid intensification events. A discussion of possible future solutions to this problem is presented.

Significance Statement

Because of the availability of large modern datasets portraying sea level pressure across the globe, meteorologists have turned to automated detection and tracking of midlatitude cyclones. Detection and tracking are of interest since these storm systems play an important role in weather and climate and potential changes in their location, frequency, and intensity are of considerable societal interest given climate change. This paper compares the results obtained from one commonly used automated tracking method with tracks obtained by human analysts. We find substantial discrepancies in cyclone position, intensity, and intensification rates and that these differences are not eliminated by using improved analyses. A discussion of possible future solutions is presented.

Restricted access
Satoki Tsujino
,
Takeshi Horinouchi
, and
Udai Shimada

Abstract

Doppler weather radars are powerful tools for investigating the inner-core structure and intensity of tropical cyclones (TCs). The Doppler velocity can provide quantitative information on the vortex structure in the TCs. The Generalized Velocity Track Display (GVTD) technique has been used to retrieve the axisymmetric circulations and asymmetric tangential flows in the TCs from ground-based single-Doppler radar observations. GVTD can have limited applicability to asymmetric vortices due to the closure assumption of no asymmetric radial flows. The present study proposes a new closure formulation that includes asymmetric radial flows, based on the Helmholtz decomposition. Here it is assumed that the horizontal flow is predominantly rotational and expressed with a streamfunction, but limited inclusion of wavenumber-1 divergence is available. Unlike the original GVTD, the decomposition introduces consistency along radius by solving all equations simultaneously. The new approach, named GVTD-X, is applied to analytical vortices and a real TC with asymmetric structures. This approach makes the retrieval of axisymmetric flow relatively insensitive to the contamination from asymmetric flows and to small errors in storm center location. For an analytical vortex with a wavenumber-2 asymmetry, the maximum relative error of the axisymmetric tangential wind retrieved by GVTD-X is less than 2% at the radius of the maximum wind speed. In practical applications, errors can be evaluated by comparing results for different maximum wavenumbers. When applied to a real TC, GVTD-X largely suppressed an artificial periodic fluctuation that occurs in GVTD from the aliasing of the neglected asymmetric radial flows.

Open access
Michael S. Fischer
,
Robert F. Rogers
,
Paul D. Reasor
, and
Jason P. Dunion

Abstract

This study uses a recently-developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the mid-tropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.

Restricted access
Mary H. Korendyke
and
David M. Straus

Abstract

This paper analyzes the relationships between the circulation regimes of the 500 hPa height (z500) and 250 hPa zonal winds (u250) in the Pacific North America region during boreal winter, and the 45-day Northern Hemisphere oscillation identified by Stan and Krishnamurthy (2019) in z500. The regimes were calculated using a k-means clustering applied to the leading 12 Principal Components of the combined z500/u250 anomaly fields. We divided the oscillation into 8 arbitrary phases. The oscillation phase z500 composite maps are spatially well correlated with regime z500 composites: phases 1–2 are best correlated with the Arctic Low, phases 3–5 with the Pacific Trough, phase 6 with the Arctic High, and phases 7–8 with the Alaskan Ridge. We found that these correlations are generally consistent with the regimes that tend to occur during the individual oscillation phases: the Arctic Low occurs above significance in phases 1–2, the Pacific Trough in phase 3, and Alaskan Ridge in phases 7–8. Therefore, the oscillation has a preferred order with respect to the regimes. The regime transitions indicate a pattern that moves through the Pacific Wavetrain, a regime that appears for k=5 as a mean state. Transitions out of this regime into different regimes are preferred in different phases of the oscillation. These results imply a possible enhancement to regime prediction using the low-frequency oscillations in combination with regimes.

Open access
Douglas Schuster
and
Michael Friedman
Open access
Peiyun Zhu
,
Tianyi Li
,
Jeffrey D. Mirocha
,
Robert S. Arthur
,
Zhao Wu
, and
Oliver B. Fringer

Abstract

While numerous modeling studies have focused on the interaction of ocean surface waves with the atmospheric boundary layer, most employ idealized waves that are either monochromatic or synthetically generated from a theoretical wave spectrum, and the atmospheric solvers are typically incompressible. To study wind–wave coupling in real-world scenarios, a model that can simulate both realistic meteorological and wave conditions is necessary. In this paper we describe the implementation of a moving bottom boundary condition into the Weather Research and Forecasting Model for large-eddy simulation applications. We first describe the moving bottom boundary conditions within WRF’s pressure-based vertical coordinate system. We then validate our code with idealized test cases that have analytical solutions, including flow over a monochromatic wave with and without viscosity. Finally, we present results from turbulent flows over a moving monochromatic wave with different wave ages, and demonstrate satisfactory agreement of the wave growth rate with results from the literature. We also compare atmospheric stress and wind parameters from two physically equivalent cases. The first specifies a wind moving in the same direction as a propagating wave, while the second involves a stationary wave with the wind adjusted such that the wind relative to the wave is the same as in the first case. Results indicate that the velocity and Reynolds stress profiles for the two cases match, further validating the moving bottom implementation.

Open access
Jeremiah O. Piersante
,
Kristen L. Corbosiero
, and
Robert G. Fovell

Abstract

Radially outward-propagating, diurnal pulses in tropical cyclones (TCs) are associated with TC intensity and structural changes. The pulses are observed to feature either cloud-top cooling or warming, so-called cooling pulses (CPs) or warming pulses (WPs), respectively, with CPs posing a greater risk for hazardous weather because they often assume characteristics of tropical squall lines. The current study evaluates the characteristics and origins of simulated CPs using various convection-permitting Weather Research and Forecasting (WRF) Model simulations of Hurricane Dorian (2019), which featured several CPs and WPs over the tropical Atlantic Ocean. CP evolution is tested against choice of microphysics parameterization, whereby the Thompson and Morrison schemes present distinct mechanisms for CP creation and propagation. Specifically, the Thompson CP is convectively coupled and propagates outward with a rainband within 100–300 km of the storm center. The Morrison CP is restricted to the cirrus canopy and propagates radially outward in the upper-level outflow layer, unassociated with any rainband, within 200–600 km of the storm center. The Thompson simulation better represents the observations of this particular event, but it is speculated that CPs in nature can resemble characteristics from either MP scheme. It is, therefore, necessary to evaluate pulses beyond just brightness temperature (e.g., reflectivity, rain rate), especially within simulations where full fields are available.

Significance Statement

Tropical cyclone size and structure are influenced by the time of day. Identifying and predicting such characteristics is critical for evaluating hazardous weather risk of storms close to land. While satellite observations are valuable for recognizing daily fluctuations of tropical cyclone clouds as seen from space, they do not reliably capture what occurs at the surface. To investigate the relationship between upper-level cloud oscillations and rainbands, this study analyzes simulations of a major hurricane along the coast of Florida. The results show that rainbands are not always tied to changes in cloud tops, suggesting multiple pathways toward the daily oscillation of upper-level tropical cyclone clouds.

Restricted access
Rebekah Cavanagh
and
Eric C. J. Oliver

Abstract

Winter extratropical cyclones (ETCs) are dominant features of winter weather on the east coast of North America. These storms are characterized by high winds and heavy precipitation (rain, snow, and ice). ETCs are well predicted by numerical weather prediction models (NWPs) at short- to midrange forecast lead times, but prediction on seasonal time scales is lacking. We develop a set of multiple linear regression models, using stepwise regression and cross validation, to predict the number of storms expected to affect a specific location throughout the winter storm season. Each model in the set predicts a specific storm type (e.g., snow, rain, or bomb storms). This set of models is applied in a probabilistic forecast framework that uses the probability density function of the prediction in combination with climatological mean storm activity. The resulting forecast makes statements about the likelihood of below-average, average, or above-average activity for all storms and for each of the type-specific subsets of storms. Though this forecast framework could in theory be applied anywhere, we demonstrate its skill in forecasting the characteristics of the winter storm season experienced in Halifax, Nova Scotia, Canada.

Significance Statement

Winter storms are a disruptive but inevitable part of life on the eastern coast of North America all the way from the Carolinas to Labrador. Knowing each fall what to expect for the upcoming winter storm season is not only a matter of public interest, but also of great public safety and financial importance. Here we develop a model that uses the state of the atmosphere over the month of September to forecast the upcoming winter storm characteristics for a specified region of interest. Our model uses a multiple linear regression approach to make skilled forecasts including probability statements about the level and type of storm activity. Forecasts can be used to inform planning for the winter ahead.

Restricted access
Lauren E. Pounds
,
Conrad L. Ziegler
,
Rebecca D. Adams-Selin
, and
Michael I. Biggerstaff

Abstract

This study uses a new, unique dataset created by combining multi-Doppler radar wind and reflectivity analysis, diabatic Lagrangian analysis (DLA) retrievals of temperature and water substance, and a complex hail trajectory model to create millions of numerically simulated hail trajectories in the Kingfisher, OK supercell on 29 May 2012. The DLA output variables are used to obtain a realistic, 4-D depiction of the storm's thermal and hydrometeor structure as required input to the detailed hail growth trajectory model. Hail embryos are initialized in the hail growth module every three minutes of the radar analysis period (2251-0000 UTC) to produce over 2.7 million hail trajectories.

A spatial integration technique considering all trajectories is used to identify locations within the supercell where melted particles, sub-severe, and severe hailstones reside in their lowest and highest concentrations. It is found that hailstones are more likely to reside for longer periods closer to the downshear updraft within the midlevel mesocyclone in a region of decelerated mid-level mesocyclonic horizontal flow, termed the downshear deceleration zone (DDZ). Additionally, clusters of trajectories are analyzed using a trajectory clustering method. Trajectory clusters show there are many trajectory pathways that result in hailstones ≥ 4.5 cm, including trajectories that begin upshear of the updraft away from ideal growth conditions and trajectories that grow within the DDZ. There are also trajectory clusters with similar shapes, yet experience widely different environmental and hailstones characteristics along the trajectory.

Restricted access