Browse

You are looking at 21 - 23 of 23 items for :

  • Modern Era Retrospective-Analysis for Research and Applications (MERRA) x
  • Refine by Access: All Content x
Clear All
Yonghong Yi, John S. Kimball, Lucas A. Jones, Rolf H. Reichle, and Kyle C. McDonald

Abstract

The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (T max) and minimum (T min) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for T min and T max) and drier (~50 Pa for VPD) for low- and middle-latitude regions (<50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (>3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≤9 km) spatial resolution.

Full access
Michele M. Rienecker, Max J. Suarez, Ronald Gelaro, Ricardo Todling, Julio Bacmeister, Emily Liu, Michael G. Bosilovich, Siegfried D. Schubert, Lawrence Takacs, Gi-Kong Kim, Stephen Bloom, Junye Chen, Douglas Collins, Austin Conaty, Arlindo da Silva, Wei Gu, Joanna Joiner, Randal D. Koster, Robert Lucchesi, Andrea Molod, Tommy Owens, Steven Pawson, Philip Pegion, Christopher R. Redder, Rolf Reichle, Franklin R. Robertson, Albert G. Ruddick, Meta Sienkiewicz, and Jack Woollen

Abstract

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.

By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.

Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).

Full access
Hidde Leijnse, Remko Uijlenhoet, and Alexis Berne

Abstract

Microwave links can be used for the estimation of path-averaged rainfall by using either the path-integrated attenuation or the difference in attenuation of two signals with different frequencies and/or polarizations. Link signals have been simulated using measured time series of raindrop size distributions (DSDs) over a period of nearly 2 yr, in combination with wind velocity data and Taylor’s hypothesis. For this purpose, Taylor’s hypothesis has been tested using more than 1.5 yr of high-resolution radar data. In terms of correlation between spatial and temporal profiles of rainfall intensities, the validity of Taylor’s hypothesis quickly decreases with distance. However, in terms of error statistics, the hypothesis is seen to hold up to distances of at least 10 km. Errors and uncertainties (mean bias error and root-mean-square error, respectively) in microwave link rainfall estimates due to spatial DSD variation are at a minimum at frequencies (and frequency combinations) where the power-law relation for the conversion to rainfall intensity is close to linear. Errors generally increase with link length, whereas uncertainties decrease because of the decrease of scatter about the retrieval relations because of averaging of spatially variable DSDs for longer links. The exponent of power-law rainfall retrieval relations can explain a large part of the variation in both bias and uncertainty, which means that the order of magnitude of these error statistics can be predicted from the value of this exponent, regardless of the link length.

Full access