Browse

You are looking at 21 - 22 of 22 items for :

  • Sixth WMO Data Assimilation Symposium x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All

Intercomparison and Coupling of Ensemble and Four-Dimensional Variational Data Assimilation Methods for the Analysis and Forecasting of Hurricane Karl (2010)

Jonathan Poterjoy
and
Fuqing Zhang

Abstract

This study examines the performance of ensemble and variational data assimilation systems for the Weather Research and Forecasting (WRF) Model. These methods include an ensemble Kalman filter (EnKF), an incremental four-dimensional variational data assimilation (4DVar) system, and a hybrid system that uses a two-way coupling between the two approaches (E4DVar). The three methods are applied to assimilate routinely collected data and field observations over a 10-day period that spans the life cycle of Hurricane Karl (2010), including the pregenesis disturbance that preceded its development into a tropical cyclone. In general, forecasts from the E4DVar analyses are found to produce smaller 48–72-h forecast errors than the benchmark EnKF and 4DVar methods for all variables and verification methods tested in this study. The improved representation of low- and midlevel moisture and vorticity in the E4DVar analyses leads to more accurate track and intensity predictions by this system. In particular, E4DVar analyses provide persistently more skillful genesis and rapid intensification forecasts than the EnKF and 4DVar methods during cycling. The data assimilation experiments also expose additional benefits of the hybrid system in terms of physical balance, computational cost, and the treatment of asynoptic observations near the beginning of the assimilation window. These factors make it a practical data assimilation method for mesoscale analysis and forecasting, and for tropical cyclone prediction.

Full access
Hailing Zhang
and
Zhaoxia Pu

Abstract

A series of numerical experiments are conducted to examine the impact of surface observations on the prediction of landfalls of Hurricane Katrina (2005), one of the deadliest disasters in U.S. history. A specific initial time (0000 UTC 25 August 2005), which led to poor prediction of Hurricane Katrina in several previous studies, is selected to begin data assimilation experiments. Quick Scatterometer (QuikSCAT) ocean surface wind vectors and surface mesonet observations are assimilated with the minimum central sea level pressure and conventional observations from NCEP into an Advanced Research version of the Weather Research and Forecasting Model (WRF) using an ensemble Kalman filter method. Impacts of data assimilation on the analyses and forecasts of Katrina’s track, landfalling time and location, intensity, structure, and rainfall are evaluated. It is found that the assimilation of QuikSCAT and mesonet surface observations can improve prediction of the hurricane track and structure through modifying low-level thermal and dynamical fields such as wind, humidity, and temperature and enhancing low-level convergence and vorticity. However, assimilation of single-level surface observations alone does not ensure reasonable intensity forecasts because of the lack of constraint on the mid- to upper troposphere. When surface observations are assimilated with other conventional data, obvious enhancements are found in the forecasts of track and intensity, realistic convection, and surface wind structures. More importantly, surface data assimilation results in significant improvements in quantitative precipitation forecasts (QPFs) during landfalls.

Full access