Browse

You are looking at 21 - 22 of 22 items for :

  • Years of the Maritime Continent x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Chen Li, Jing-Jia Luo, and Shuanglin Li

Abstract

The impacts of different types of El Niño–Southern Oscillation (ENSO) on the interannual negative correlation (seesaw) between the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer (June–August) are investigated using the ECMWF twentieth-century reanalysis (ERA-20C) dataset and numerical experiments with a global atmospheric model [the Met Office Unified Model global atmosphere, version 6 (UM-GA6)]. The results suggest that ENSO plays a prominent role in governing the CEF-seesaw relation. A high positive correlation (0.86) exists between the MC CEF and Niño-3.4 index and also in the case of eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, EP La Niña, and CP La Niña events. In contrast, a negative correlation (−0.35) exists between the Somali CEF and Niño-3.4 index, and this negative relation is significant only in the EP El Niño years. Further, the variation of the MC CEF is highly correlated with the local north–south sea surface temperature (SST) gradient, while the variation of the Somali CEF displays little relation with the local SST gradient. The Somali CEF may be remotely influenced by ENSO. The model results confirm that the EP El Niño plays a major role in causing the weakened Somali CEF via modifying the Walker cell. However, the impact of the EP El Niño on the Somali CEF differs with different seasonal background. It is also found that the interannual CEF seesaw displays a multidecadal change before and after the 1950s, which is linked with the multidecadal strengthening of the intensity of the EP ENSO.

Full access
Jieshun Zhu, Wanqiu Wang, and Arun Kumar

Abstract

The observed Madden–Julian oscillation (MJO) tends to propagate eastward across the Maritime Continent from the eastern equatorial Indian Ocean to the western Pacific. However, numerical simulations present different levels of fidelity in representing the propagation, especially for the tropical convection associated with the MJO. This study conducts a series of coupled simulations using the NCEP CFSv2 to explore the impacts of SST feedback and convection parameterization on the propagation simulations. First, two simulations differing in the model horizontal resolutions are conducted. The MJO propagation in these two simulations is found generally insensitive to the resolution change. Further, based on the CFSv2 with a lower resolution, two additional experiments are performed with model SSTs nudged to climatologies with different time scales representing different air–sea coupling strength. It is demonstrated that weakening the air–sea coupling strength significantly degrades the MJO propagation simulation, suggesting the critical role of SST feedback in maintaining MJO propagation. Last, the sensitivity to convection parameterization is explored by comparing two simulations with different convection parameterization schemes. Analyses of these simulations indicate that including air–sea coupling alone in a dynamical model does not result in realistic maintenance of the MJO eastward propagation without the development of favorable SST conditions in the western Pacific. In both observations and one simulation with realistic MJO propagations, the preconditioning of SSTs is strongly affected by surface latent heat fluxes that are modulated by surface wind anomalies in both zonal and meridional directions. The diagnostics highlight the critical contribution from meridional winds in wind speed variations, which has been neglected in most MJO studies.

Full access