Browse

You are looking at 31 - 40 of 43 items for :

  • Years of the Maritime Continent x
  • Refine by Access: All Content x
Clear All
Dongliang Yuan, Xiang Li, Zheng Wang, Yao Li, Jing Wang, Ya Yang, Xiaoyue Hu, Shuwen Tan, Hui Zhou, Adhitya Kusuma Wardana, Dewi Surinati, Adi Purwandana, Mochamad Furqon Azis Ismail, Praditya Avianto, Dirham Dirhamsyah, Zainal Arifin, and Jin-Song von Storch

Abstract

The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

Full access
Casey D. Burleyson, Samson M. Hagos, Zhe Feng, Brandon W. J. Kerns, and Daehyun Kim

Abstract

The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.

Full access
Ching-Shu Hung and Chung-Hsiung Sui

Abstract

The evolution processes for propagating Madden–Julian oscillations with strong magnitude over the Indian Ocean (IO) and Maritime Continent (MC) are investigated through a diagnosis of ECMWF reanalysis data for November–April 1982–2011. A scale-separated lower-tropospheric (1000–700 hPa) moisture budget is analyzed for four stages of composite life cycle: suppressed, cloud developing, convective, and decaying. Overall, the budgets in the IO and MC are dominated by wave-induced boundary layer convergence in the anomalous easterlies (WC) and advection. Starting from the suppressed stage in the central IO, moistening by WC and advection by easterly anomalies contributes to an initiation of the MJO convection in the western IO while surface evaporation and/or shallow convection moistens the central IO. In the following cloud developing and convective stage in the central IO, moistening by WC and advection by the downstream Kelvin–Rossby wave east of central IO lead to eastward propagation of deep convection. In the MC, the suppressed stage coincides with the convective stage in the central IO that promotes anomalous easterlies, subsidence, and enhanced rain rate over islands. Unlike WC and advective moistening in the IO that both occur in the equatorial zone, advective moistening in MC tends to be negative (positive) on windward (leeward) side of the major islands in the equatorial zone and more organized over the Arafura Sea, conducive to a southward detour of the eastward-propagating MJO.

Open access
Chen Li, Jing-Jia Luo, Shuanglin Li, Harry Hendon, Oscar Alves, and Craig MacLachlan

Abstract

Predictive skills of the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer are assessed using three ensemble seasonal forecasting systems, including the coarse-resolution Predictive Ocean Atmospheric Model for Australia (POAMA, version 2), the intermediate-resolution Scale Interaction Experiment–Frontier Research Center for Global Change (SINTEX-F), and the high-resolution seasonal prediction version of the Australian Community Climate and Earth System Simulator (ACCESS-S1) model. Retrospective prediction results suggest that prediction of the Somali CEF is more challenging than that of the MC CEF. While both the individual models and the multimodel ensemble (MME) mean show useful skill (with the anomaly correlation coefficient being above 0.5) in predicting the MC CEF up to 5-month lead, only ACCESS-S1 and the MME can skillfully predict the Somali CEF up to 2-month lead. Encouragingly, the CEF seesaw index (defined as the difference of the two CEFs as a measure of the negative phase relation between them) can be skillfully predicted up to 4–5 months ahead by SINTEX-F, ACCESS-S1, and the MME. Among the three models, the high-resolution ACCESS-S1 model generally shows the highest skill in predicting the individual CEFs, the CEF seesaw, as well as the CEF seesaw index–related precipitation anomaly pattern in Asia and northern Australia. Consistent with the strong influence of ENSO on the CEFs, the skill in predicting the CEFs depends on the model’s ability in predicting not only the eastern Pacific SST anomaly but also the anomalous Walker circulation that brings ENSO’s influence to bear on the CEFs.

Full access
Wan-Ling Tseng, Huang-Hsiung Hsu, Noel Keenlyside, Chiung-Wen June Chang, Ben-Jei Tsuang, Chia-Ying Tu, and Li-Chiang Jiang

Abstract

This study uses the atmospheric general circulation model (AGCM) ECHAM5 coupled with the newly developed Snow–Ice–Thermocline model (ECHAM5-SIT) to examine the effects of orography and land–sea contrast on the Madden–Julian oscillation (MJO) in the Maritime Continent (MC) during boreal winter. The ECHAM5-SIT is one of the few AGCMs that realistically simulate the major characteristics of the MJO. Three experiments are conducted with realistic topography, without orography, and with oceans only in the MC region to evaluate the relative effects of orography and land–sea contrast. Orography and land–sea contrast have the following effects on the MJO in the MC: 1) a larger amplitude, 2) a smaller zonal scale, 3) more realistic periodicity and stronger eastward-propagating signals, 4) a stronger southward detour during the eastward propagation, 5) a distorted coupled Kelvin–Rossby wave structure, and 6) larger low-level moisture convergence. The existence of mountainous islands also enhances the mean westerly in the eastern Indian Ocean and the western MC, as well as the moisture content over the MC. This enhancement of mean states contributes to the stronger eastward-propagating MJO. The findings herein suggest that theoretical and empirical studies, which are largely derived from an aquaplanet framework, have likely provided an oversimplified view of the MJO. The effects of mountainous islands should be considered for better understanding and more accurate forecast of the MJO.

Full access
Satoru Yokoi, Shuichi Mori, Masaki Katsumata, Biao Geng, Kazuaki Yasunaga, Fadli Syamsudin, Nurhayati, and Kunio Yoneyama

Abstract

This study analyzes data obtained by intensive observation during a pilot field campaign of the Years of the Maritime Continent Project (Pre-YMC) to investigate the diurnal cycle of precipitation in the western coastal area of Sumatra Island. The diurnal cycle during the campaign period (November–December 2015) is found to have a number of similarities with statistical behavior of the diurnal cycle as revealed by previous studies, such as afternoon precipitation over land, nighttime offshore migration of the precipitation zone, and dependency on Madden–Julian oscillation (MJO) phase. Composite analyses of radiosonde soundings from the Research Vessel (R/V) Mirai, deployed about 50 km off the coast, demonstrate that the lower free troposphere starts cooling in late afternoon (a couple of hours earlier than the cooling in the boundary layer), making the lower troposphere more unstable just before precipitation starts to increase. As the nighttime offshore precipitation tends to be more vigorous on days when the cooling in the lower free troposphere is larger, it is possible that the destabilization due to the cooling contributes to the offshore migration of the precipitation zone via enhancement of convective activity. Comparison of potential temperature and water vapor mixing ratio tendencies suggests that this cooling is substantially due to vertical advection by an ascent motion, which is possibly a component of shallow gravity waves. These results support the idea that gravity waves emanating from convective systems over land play a significant role in the offshore migration of the precipitation zone.

Full access
Andung Bayu Sekaranom and Hirohiko Masunaga

Abstract

Properties of the rain estimation differences between Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) 2A25, TRMM Microwave Imager (TMI) 2A12, and TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 are investigated with a focus on distinguishing between nonextreme and extreme rains over the Maritime Continent from 1998 to 2014. Statistical analyses of collocated TMI 1B11 85-GHz polarization-corrected brightness temperatures, PR 2A23 storm-top heights, and PR 2A25 vertical rain profiles are conducted to identify possible sources of the differences. The results indicate that a large estimation difference exists between PR and TMI for the general rain rate (extreme and nonextreme events). The PR–TMI rain-rate differences are larger over land and coast than over ocean. When extreme rain is isolated, a higher frequency of occurrence is identified by PR over ocean, followed by TMI and TMPA. Over land, TMI yields higher rain frequencies than PR with an intermediate range of rain rates (between 15 and 25 mm h−1), but it gives way to PR for the highest extremes. The turnover at the highest rain rates arises because the heaviest rain depicted by PR does not necessarily accompany the strongest ice-scattering signals, which TMI relies on for estimating precipitation over land and coast.

Full access
Xingwen Jiang, Jianchuan Shu, Xin Wang, Xiaomei Huang, and Qing Wu

Abstract

Floods and droughts hit southwest China (SWC) frequently, especially over the last decade. In this study, the dominant modes of summer rainfall anomalies over SWC on the interannual time scale and the possible causes are investigated. Interannual variability of the summer rainfall over SWC has two dominant modes. The first mode features rainfall increases over most of SWC except central Sichuan, and the second mode exhibits wet conditions in the north but dry conditions in the south. The suppressed convection over the Philippine Sea affects the first mode by inducing anomalous anticyclones over the western North Pacific and to the south of the Tibetan Plateau, which transport more water vapor to eastern Tibet and eastern SWC and hence favor above-normal rainfall there. The enhanced convection over the western Maritime Continent could generate similar atmospheric circulation anomalies associated with the suppressed convection over the Philippine Sea but with a northward shift, resulting in significant increases in rainfall over northeastern SWC but weak decreases in rainfall over southeastern SWC. As a result, the rainfall anomalies over SWC tend to be different between El Niño–Southern Oscillation decaying and developing phases because their different impacts on the convection over the Philippine Sea and the western Maritime Continent. Meanwhile, the sea surface temperature in the tropical southeastern Indian Ocean also plays an important role in variability of the rainfall over SWC because of its significant impact on the convection over the western Maritime Continent.

Full access
See Yee Lim, Charline Marzin, Prince Xavier, Chih-Pei Chang, and Bertrand Timbal

Abstract

TRMM rainfall data from 1998–2012 are used to study the impacts and interactions of cold surges (CSs) and the Madden–Julian oscillation (MJO) on rainfall over Southeast Asia during the boreal winter season from November to February. CSs are identified using a new large-scale index. The frequencies of occurrences of these two large-scale events are comparable (about 20% of the days each), but the spatial pattern of impacts show differences resulting from the interactions of the general flow with the complex orography of the region. The largest impact of CSs occurs in and around the southern South China Sea as a result of increased low-level convergence on the windward side of the terrain and increased shear vorticity off Borneo that enhances the Borneo vortex. The largest impact of the MJO is in the eastern equatorial Indian Ocean, sheltered from CSs by Sumatra. In general CSs are significantly more likely to trigger extreme rainfall. When both systems are present, the rainfall pattern is mainly controlled by the CSs. However, the MJO makes the environment more favorable for convection by moistening the atmosphere and facilitating conditional instability, resulting in a significant increased rainfall response compared to CSs alone. In addition to the interactions of the two systems in convection, this study confirms a previously identified mechanism in which the MJO may reduce CS frequency through opposing dynamic structures.

Full access
Claire L. Vincent and Todd P. Lane

Abstract

The Maritime Continent is one of the wettest regions on the planet and has been shown to be important for global budgets of heat and moisture. Convection in the region, however, varies on several interrelated scales, making it difficult to quantify the precipitation climate and understand the key processes. For example, the diurnal cycle in precipitation over the land varies substantially according to the phase of the Madden–Julian oscillation (MJO), and the diurnal precipitation cycle over the water is coupled to that over the land, in some cases for distances of over 1000 km from the coast.

Here, a 10-yr austral summer climatology of diurnal and MJO-scale variations in rain rate over the land and sea over the Maritime Continent is presented. The climatology is based on mesoscale model simulations with a horizontal grid length of 4 km and satellite precipitation estimates. The amplitude of the observed diurnal precipitation cycle is shown to reach a maximum just prior to the MJO active phase, with a weaker secondary maximum after the MJO active phase. Although these two maxima also exist in the modeled diurnal precipitation cycle, there is less difference between the maxima before and after the MJO active phase than in the observations. The modeled sea-breeze circulation is also shown to possess approximately equal maxima just before and just after the MJO active period, suggesting that the asymmetry of the diurnal precipitation cycle about the MJO active period is related more to moisture availability than kinematic forcing.

Full access