Browse

You are looking at 31 - 40 of 580 items for :

  • Weather, Climate, and Society x
  • Refine by Access: All Content x
Clear All
Natasha Simonee, Jayko Alooloo, Natalie Ann Carter, Gita Ljubicic, and Jackie Dawson

Abstract

As Inuit hunters living in Pond Inlet, Nunavut, we (N. Simonee and J. Alooloo) travel extensively on land, water, and sea ice. Climate change, including changing sea ice and increasingly unpredictable weather patterns, has made it riskier and harder for us to travel and hunt safely. Inuit knowledge supporting safe travel is also changing and is shared less between generations. We increasingly use online weather, marine, and ice products to develop locally relevant forecasts. This helps us to make decisions according to wind, waves, precipitation, visibility, sea ice conditions, and floe edge location. We apply our forecasts and share them with fellow community members to support safe travel. In this paper, we share the approach that we developed from over a decade of systematically and critically assessing forecasting products such as Windy.com, weather and marine forecasts, tide tables, C-CORE’s floe edge monitoring service, SmartICE, Zoom Earth, and time-lapse cameras. We describe the strengths and challenges we face when accessing, interpreting, and applying each product throughout different seasons. Our analysis highlights a disconnect between available products and local needs. This disconnect can be overcome by service providers adjusting services to include more seasonal and real-time information, nontechnical language, familiar units of measurement, data size proportional to internet access cost and speed, and clear relationships between weather, marine, and ice information and safe travel. Our findings have potential relevance in the circumpolar Arctic and beyond, wherever people combine Indigenous weather forecasting methods and online information for decision-making. We encourage service providers to improve product relevance and accessibility.

Open access
Victoria A. Johnson, Kimberly E. Klockow-McClain, Randy A. Peppler, and Angela M. Person

Abstract

Residents of the Oklahoma City metropolitan area are frequently threatened by tornadoes. Previous research indicates that perceptions of tornado threat affect behavioral choices when severe weather threatens and, as such, are important to study. In this paper, we examine the potential influence of tornado climatology on risk perception. Residents across central Oklahoma were surveyed about their perceptions of tornado proneness for their home location, and this was compared with the local tornado climatology. Mapping and programming tools were then used to identify relationships between respondents’ perceptions and actual tornado events. Research found that some dimensions of the climatology, such as tornado frequency, nearness, and intensity, have complex effects on risk perception. In particular, tornadoes that were intense, close, and recent had the strongest positive influence on risk perception, but weaker tornadoes appeared to produce an “inoculating” effect. Additional factors were influential, including sharp spatial discontinuities between neighboring places that were not tied to any obvious physical feature or the tornado climatology. Respondents holding lower perceptions of risk also reported lower rates of intention to prepare during tornado watches. By studying place-based perceptions, this research aims to provide a scientific basis for improved communication efforts before and during tornado events and for identifying vulnerable populations.

Open access
Jeannette Sutton, Laura Fischer, and Michele M. Wood

Abstract

Effective warning messages should tell people what they should do, how they should do it, and how to maximize their health and safety. Guidance essentially delivers two types of information: 1) information that instructs people about the actions to take in response to a threat and 2) information about how and why these recommended protective actions will reduce harm. However, recent research reported that while automated tornado warnings, sent by the National Weather Service Storm Prediction Center via the account @NWStornado on Twitter, included useful information about the location of the threat, the potential impacts, and populations at risk, they failed to provide content that would contribute to successful protective actions. In this experimental study we investigate how the inclusion and presentation of protective action guidance affects participant perceptions of a tornado warning message and their perceived ability to act upon the information (i.e., self- and response efficacy). We find that the inclusion of protective action guidance results an increase in the participants’ understanding of the message, their ability to decide what to do, and their perceived self- and response efficacy. Knowing how to take action to protect oneself and believing the actions will make oneself safe are key motivators to taking action when faced with a significant threat. Future warning research should draw from other persuasive messaging and health behavior theories and should include self-efficacy and response efficacy as important causal factors. It should also look across additional hazards to determine if these outcomes differ by the length of forewarning and hazard type.

Restricted access
Y. G. Tao, F. Zhang, W. J. Liu, and C. Y. Shi

Abstract

Understanding tourists’ perceptions of climate is essential to improving tourist satisfaction and destination marketing. This paper constructs a sentiment analysis framework for tourists’ perceptions of climate using not only continuous climate data but also short-term weather data. Based on Chinese social media platform Sina Weibo, we found that Chinese tourists’ perceptions of climate change were at an initial stage of development. The accuracies of word segmentation between sentiment and nonsentiment words using ROST content mining (CM), BosonNLP, and GooSeeker were all high, and the three gradually decreased. The positively expressed sentences accounted for 79.80% of the entire text using ROST emotion analysis (EA), and the sentiment score was 0.784 at the intermediate level using artificial neural networks. The results indicate that the perceived emotional map is generally consistent with the actual climate and that cognitive evaluation theory is suitable to study text on climate perception.

Open access
Hellen E. Msemo, Andrea L. Taylor, Cathryn E. Birch, Andrew J. Dougill, and Andrew Hartley

Abstract

This paper investigates the value of weather and climate information at different time scales for decision-making in the Tanzanian disaster risk reduction sector using nonmonetary approaches. Interviews and surveys were conducted with institutions responsible for disaster management at national, regional, and district levels. A range of values were identified, including 1) making informed decisions for disaster-preparedness-, response-, recovery-, and restoration-related activities; 2) tailoring of directives and actions based on sectoral impacts; and 3) identification of hot-spot areas for diseases outbreaks and surplus food production. However, while a number of guidelines, policies, acts, and regulations for disaster risk reduction exist, it is not clear how well they promote the use of weather and climate information across climate-sensitive sectors. Nonetheless, we find that well-structured disaster risk reduction coordination across sectors and institutions from the national to the district level exists, although there is a need for further development of integrated early warning systems and a common platform to evaluate effectiveness and usefulness of weather warnings and advisories. Key challenges to address in increasing the uptake of weather warnings and advisories include language barriers, limited dissemination to rural areas, and limited awareness of forecasts. From the findings of this study, we recommend further quantitative evaluation of the skill of the severe weather warnings issued by the Tanzania Meteorological Authority and an assessment of how decisions and actions are made by recipients of the warnings in the disaster risk reduction sector at different stages in the warning, response, and recovery process.

Open access
Jen Henderson, Lisa Dilling, Rebecca Morss, Olga Wilhelmi, and Ursula Rick

Abstract

Unintended consequences from decisions made in one part of a social–ecological system in response to climate hazards can magnify vulnerabilities for others in the same system. Yet anticipating or identifying these cascades and spillovers in real time is difficult. Social learning is an important component of adaptation that has the ability to facilitate adaptive capacity by mobilizing multiple actors around a common resource to manage collectively in ways that build local knowledge, reflective practices, and a broader understanding of contexts for decisions. While the foundations of social learning in resource management have been theorized in the literature, empirical examples of unintended consequences that trigger social learning are few. This article analyzes two cases of drought decisions made along the Arkansas River basin in Colorado; in each, social learning occurred after actors experienced unanticipated impacts from others’ decisions. Methods include interviews with actors, both individual and institutional representatives of different sectors (recreation, agriculture, etc.), and a review of relevant historical and policy documents. The study identifies four features of social learning that aided actors’ responses to unanticipated consequences: governance structures that facilitated more holistic river management; relationship boundaries that expanded beyond small-scale decisions to capture interactions and emergent problems; knowledge of others’ previous experience, whether direct or indirect; and creation of spaces for safer experimentation with adaptation changes. Results identify empirical examples of actors who successfully learned to adapt together to unexpected consequences and thus may provide insight for others collectively managing drought extremes.

Restricted access
Maria Kubacka, Maciej Matczak, Maciej Kałas, Lucjan Gajewski, and Marcin Burchacz

Abstract

Weather is a crucial factor (and the most unpredictable of all factors) determining the success or failure of any offshore activity, such as investments in seafloor grid connectors (gas, energy, or communication), development of oil and gas drilling facilities, and erection of offshore wind farms. Weather conditions cannot be foreseen accurately over a time horizon longer than a few days, and so arranging a realistic work schedule for such an enterprise poses a great challenge. This paper identifies and analyzes the greatest risks associated with weather conditions at sea. The importance and impact of weather on the project implementation are assessed and mitigating measures are proposed. As part of the work, a review of scientific literature was conducted, and the core conclusions were reached using information-gathering techniques and a documentation review of the offshore projects implemented in cooperation with the Maritime Institute. The authors based their analysis on experience from survey campaigns conducted in the Baltic Sea in the areas of the investments planned for implementation. The analysis of risks associated with weather conditions is based on the statistical weather data obtained using the Wave Ocean Model cycle 4 (WAM4). The research reveals that it is impossible to create an accurate survey schedule for long-term offshore projects; however, using statistics for each individual hydrodynamic parameter can, to some extent, facilitate the creation of survey schedules for maritime projects.

Open access
Max Martin, Abhilash S, Vijaykumar Pattathil, Harikumar R, NT Niyas, TM Balakrishnan Nair, Yatin Grover, and Filippo Osella

Abstract

Ocean State Forecasts (OSF) contribute to safe and sustainable fishing, but forecast usage among artisanal fishers is often limited. Our research in Thiruvananthapuram district in the southern Indian state of Kerala tested forecast quality and value, and how fishers engage with forecasts. In two fishing villages, we verified forecast accuracy, skill and reliability by comparing forecasts with observations during the 2018 monsoon season (June – September; n=122). We assessed forecast value by analyzing fishers’ perceptions of weather and risks and the way they used forecasts–based on 8 focus group discussions, 20 interviews, conversations and logs of 10 fishing boats. We find that while forecasts are mostly accurate, inadequate forecasting of unusual events (e.g., wind >45 kmph) and frequent fishing restrictions (n= 32) undermine their value. While fishers seek more localized and detailed forecasts, they do not always use them. Weather forecasts are just one of the tools artisanal fishers deploy; not simply to decide as to whether to go to sea or not, but also to manage potential risks, allowing them to prepare for fishing under hazardous conditions. Instead, their decisions are primarily based on the availability of fish and their economic needs. Based on our findings, we suggest that political, economic and social marginality of south Indian fishers influences the fishers’ perceptions and responses to weather-related risks. Therefore, improving forecast usage requires not only better forecast skill and wide dissemination of tailor-made weather information, but also better appreciation of risk cultures and the livelihood imperatives of artisanal fishing communities.

Restricted access
Torbjørn Selseng, Marit Klemetsen, and Tone Rusdal

Abstract

In recent decades there has been a surge in the scholarship on climate change adaptation (CCA) terminology, and diverging interpretations of the term have emerged. Given the crucial role of local governments in building societywide adaptive capacity, understanding how municipalities understand and interpret CCA is important. In this study, we analyze 12 large-scale questionnaires from 2007 to 2020 distributed to all Norwegian municipalities. Using a combination of directed and conventional content analysis of the questions and answers, we summarize and map the progress of adaptation work over the 14 years and assess the consistency and the scope of the surveys in light of the current research on climate adaptation. We find diverging views on what adaptation entails, both from the researchers, in the phrasing of questions, and from the respondents. The empirical evidence suggests an overall imbalanced interpretation of CCA, in terms of the risks and consequences we may face, the climate to which adapting is needed, and adequate adaptation strategies. We go on to discuss the implications of these findings, highlighting the need for a shared and well-communicated framework for local CCA and a closer monitoring of the actual efforts of the municipalities. If instead left unchecked, this confusion might lead to unsustainable maladaptation at the local government level throughout Norway and beyond.

Open access
Maqsooda Mahomed, Alistair D. Clulow, Sheldon Strydom, Tafadzwanashe Mabhaudhi, and Michael J. Savage

Abstract

Climate change projections of increases in lightning activity are an added concern for lightning-prone countries such as South Africa. South Africa’s high levels of poverty, lack of education, and awareness, as well as a poorly developed infrastructure, increase the vulnerability of rural communities to the threat of lightning. Despite the existence of national lightning networks, lightning alerts and warnings are not disseminated well to such rural communities. We therefore developed a community-based early warning system (EWS) to detect and disseminate lightning threats and alerts in a timely and comprehensible manner within Swayimane, KwaZulu-Natal, South Africa. The system is composed of an electrical field meter and a lightning flash sensor with warnings disseminated via audible and visible alarms on site and with a remote server issuing short message services (SMSs) and email alerts. Twelve months of data (February 2018–February 2019) were utilized to evaluate the performance of the EWS’s detection and warning capabilities. Diurnal variations in lightning activity indicated the influence of solar radiation, causing convective conditions with peaks in lightning activity occurring during the late afternoon and early evening (between 1400 and 2100) coinciding with students being released from school and when most workers return home. In addition to detecting the threat of lightning, the EWS was beneficial in identifying periods that exhibited above-normal lightning activity, with two specific lightning events examined in detail. Poor network signals in rural communities presented an initial challenge, delaying data transmission to the central server until rectified using multiple network providers. Overall, the EWS was found to disseminate reliable warnings in a timely manner.

Restricted access