Browse

You are looking at 31 - 40 of 8,287 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Abigail S. Bodner, Baylor Fox-Kemper, Leah Johnson, Luke P. Van Roekel, James C. McWilliams, Peter P. Sullivan, Paul S. Hall, and Jihai Dong

Abstract

Current submesoscale restratification parameterizations, which help set mixed layer depth in global climate models, depend on a simplistic scaling of frontal width shown to be unreliable in several circumstances. Observations and theory indicate that frontogenesis is common, but stable frontal widths arise in the presence of turbulence and instabilities that participate in keeping fronts at the scale observed, the arrested scale. Here we propose a new scaling law for arrested frontal width as a function of turbulent fluxes via the Turbulent Thermal Wind (TTW) balance. A variety of Large Eddy Simulations (LES) of strain-induced fronts and TTW-induced filaments are used to evaluate this scaling. Frontal width given by boundary layer parameters drawn from observations in the General Ocean Turbulence Model (GOTM) and are found qualitatively consistent with the observed range in regions of active submesoscales. The new arrested front scaling is used to modify the mixed layer eddy restratification parameterization commonly used in coarse resolution climate models. Results in CESM-POP2 reveal the climate model’s sensitivity to the parameterization update and changes in model biases. A comprehensive multi-model study is in planning for further testing.

Restricted access
Mina Masoud and Rich Pawlowicz

Abstract

The Strait of Georgia is a large and deep fjord-like basin on the northeastern Pacific coast whose bottom waters are dramatically renewed by a series of intermittent gravity currents in summer. Here, we analyze a dataset including moored observations from 2008-2021 and shipborne measuremements in a 2018 field program, to describe the vertical and cross-channel structure of these gravity currents. We show that the timing of these currents for more than a decade is well predicted by proxy measurements for both tidal mixing strength in the Haro Strait/Boundary Pass region, and coastal upwelling on the west coast of Vancouver Island. Renewals occur as a ∼ 30 m thick turbid layer extending along the right hand slope of a broad V-shaped valley that forms the southern end of the Strait. Currents are primarily along-isobath at speeds of up to 20 cm s−1 with a small downhill component. A diagnostic analytical model with a depth-dependent eddy viscosity is fitted to the observations and confirms a clockwise rotation of current vectors with height, partly driven by boundary layer dynamics over a scale of a few meters, and partly by Coriolis forces in the near-bottom linear density gradient. Bottom drag and (small) entrainment parameters are similar to those found in other oceanic situations, and the current is “laminar” with respect to large-scale instabilities (with Froude number ≈ 1 and Ekman number ≈ 0.01), although subject to turbulence at small scales (Reynolds number ∼ 106). The predictability and reliability of this accessible rotationally-modified gravity current suggests it is an ideal geophysical laboratory for future studies of such features.

Restricted access
Kewei Lyu, Xuebin Zhang, John A. Church, Quran Wu, Russell Fiedler, and Fabio Boeira Dias

Abstract

A rapid warming and freshening of the Southern Ocean have been observed over the past several decades and attributed to the anthropogenic climate change. In this study, ocean model perturbation experiments are conducted to separate roles of individual surface forcing in the Southern Ocean temperature and salinity changes. Model-based findings are compared with results from a theoretical framework including three idealized processes defined on the θ-S diagram. Under the future scenario of CO2 doubling, the heat flux forcing dominates the large-scale warming, deepening of isopycnals, and spiciness changes along isopycnals, which can be captured by an idealized pure warming process to represent the subduction of surface heat uptake. The poleward-intensifying westerly winds account for 24% of the enhanced warming between 35°–50°S and would have comparable contribution as the heat flux forcing after removing the global ocean warming effect. In contrast, the wide-spread freshening in the Southern Ocean driven by increased surface freshwater input is largely compensated by the wind-driven saltening. The response to freshwater forcing could not be approximated as a similar pure freshening process as the induced cooling and freshening have comparable effects on density. The wind-driven changes are primarily through the local heave of isopycnals, thus resembling an idealized pure heave process, but contain considerable spiciness signals especially in the mid-latitude Southern Ocean, resulting from anomalous northward transport and subduction of heat and salt which are largely density-compensating. These distinct signatures of individual surface forcing help to better understand observed and projected changes in the Southern Ocean.

Restricted access
Andrew W. Smith, Brian K. Haus, and Rachel H. R. Stanley

Abstract

Bubbles directly link sea surface structure to the dissipation rate of turbulence in the ocean surface layer through wave breaking, and they are an important vehicle for air–sea transfer of heat and gases and important for understanding both hurricanes and global climate. Adequate parameterization of bubble dynamics, especially in high winds, requires simultaneous measurements of surface waves and breaking-induced turbulence; collection of such data would be hazardous in the field, and they are largely absent from laboratory studies to date. We therefore present data from a series of laboratory wind-wave tank experiments designed to observe bubble size distributions in natural seawater beneath hurricane conditions and connect them to surface wave statistics and subsurface turbulence. A shadowgraph imager was used to observe bubbles in three different water temperature conditions. We used these controlled conditions to examine the role of stability, surface tension, and water temperature on bubble distributions. Turbulent kinetic energy dissipation rates were determined from subsurface ADCP data using a robust inertial-subrange identification algorithm and related to wind input via wave-dependent scaling. Bubble distributions shift from narrow to broadbanded and toward smaller radius with increased wind input and wave steepness. TKE dissipation rate and shear were shown to increase with wave steepness; this behavior is associated with a larger number of small bubbles in the distributions, suggesting shear is dominant in forcing bubbles in hurricane wind-wave conditions. These results have important implications for bubble-facilitated air–sea exchanges, near-surface ocean mixing, and the distribution of turbulence beneath the air–sea interface in hurricanes.

Significance Statement

Bubbles are a vehicle for the flux of heat, momentum, and gases between the atmosphere and ocean. These fluxes contribute to the energy budgets of hurricanes, climate, and upper-ocean biology. Few to no simultaneous measurements of surface waves, bubbles, and turbulence have been made in hurricane conditions. To improve numerical model representation of bubbles, we performed laboratory experiments to parameterize bubble size distributions using physical variables including wind and waves. Bubble distributions were found to become broadbanded and shift toward smaller radius with increased wind stress and wave steepness. Turbulence dissipation rate and shear were shown to increase with wave steepness. Our results give the first physically based bubble distribution parameterization from naturally breaking waves in hurricane-force conditions.

Restricted access
Ashwita Chouksey, Alexa Griesel, Manita Chouksey, and Carsten Eden

Abstract

We investigate changes in the ocean circulation due to the variation of isopycnal diffusivity (κ iso) in a global non-eddy-resolving model. Although isopycnal diffusion is thought to have minor effects on interior density gradients, the model circulation shows a surprisingly large sensitivity to the changes: with increasing κ iso, the strength of the Atlantic residual overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) transport weaken. At high latitudes, the isopycnal diffusion diffuses temperature and salinity upward and poleward, and at low latitudes downward close to the surface. Increasing isopycnal diffusivity increases the meridional isopycnal fluxes whose meridional gradient is equatorward, hence leading to a negative contribution to the flux divergence in the tracer equations and predominant cooling and freshening equatorward of 40°. The effect on temperature overcompensates the countering effect of salinity diffusion, such that the meridional density differences decrease, along with which ACC and AMOC decrease. We diagnose the adjustment process to the new equilibrium with increased isopycnal diffusion to assess how the other terms in the tracer equations react to the increased κ iso. It reveals that around ±40° latitude, the cooling induced by the increased isopycnal flux is only partly compensated by warming by advection, explaining the net cooling. Overall, the results emphasize the importance of isopycnal diffusion on ocean circulation and dynamics, and hence the necessity of its careful representation in models.

Significance Statement

The effect of mixing by mesoscale eddies, represented as diffusion along surfaces of constant density in models, on the ocean circulation is not well understood. Here, we show that an increase in the eddy diffusivity in different setups of a global ocean model leads to a surprisingly large change of the ocean circulation. The strength of the Atlantic overturning circulation and the Antarctic Circumpolar Current decrease. We find that the interior ocean becomes cooler and fresher and that the temperature effect on density dominates over salinity, resulting in a decrease in the density gradients. Our results point out the importance of eddy diffusion on ocean circulation, and hence the necessity of its correct representation in ocean and climate models.

Restricted access
Gabin H. Urbancic, Kevin G. Lamb, Ilker Fer, and Laurie Padman

Abstract

The propagation of internal waves (IWs) of tidal frequency is inhibited poleward of the critical latitude, where the tidal frequency is equal to the Coriolis frequency (f). These subinertial IWs may propagate in the presence of background vorticity, which can reduce rotational effects. Additionally, for strong tidal currents, the isopycnal displacements may evolve into internal solitary waves (ISWs). In this study, wave generation by the subinertial K1 and M2 tides over the Yermak Plateau (YP) is modeled to understand the linear response and the conditions necessary for the generation of ISWs. The YP stretches out into Fram Strait, a gateway into the Arctic Ocean for warm Atlantic-origin waters. We consider the K1 tide for a wide range of tidal amplitudes to understand the IW generation for different forcing. For weak tidal currents, the baroclinic response is predominantly at the second harmonic due to critical slopes. For sufficiently strong diurnal currents, ISWs are generated and their generation is not sensitive to the range of f and stratifications considered. The M2 tide is subinertial yet the response shows propagating IW beams with frequency just over f. We discuss the propagation of these waves and the influence of variations of f, as a proxy for variations in the background vorticity, on the energy conversion to IWs. An improved understanding of tidal dynamics and IW generation at high latitudes is needed to quantify the magnitude and distribution of turbulent mixing, and its consequences for the changes in ocean circulation, heat content, and sea ice cover in the Arctic Ocean.

Open access
A. Pirro, E. Mauri, R. Gerin, R. Martellucci, P. Zuppelli, and P. M. Poulain

Abstract

The deepwater formation in the northern part of the South Adriatic Pit (Mediterranean Sea) is investigated using a unique oceanographic dataset. In situ data collected by a glider along the Bari–Dubrovnik transect captured the mixing and the spreading/restratification phase of the water column in winter 2018. After a period of about 2 weeks from the beginning of the mixing phase, a homogeneous convective area of ∼300-m depth breaks up due to the baroclinic instability process in cyclonic cones made of geostrophically adjusted fluid. The base of these cones is located at the bottom of the mixed layer, and they extend up to the theoretical critical depth Zc. These cones, with a diameter on the order of internal Rossby radius of deformation (∼6 km), populate the ∼110-km-wide convective site, develop beneath it, and have a short lifetime of weeks. Later on, the cones extend deeper and intrusion from deep layers makes their inner core denser and colder. These observed features differ from the long-lived cyclonic eddies sampled in other ocean sites and formed at the periphery of the convective area in a postconvection period. So far, to the best of our knowledge, only theoretical studies, laboratory experiments, and model simulations have been able to predict and describe our observations, and no other in situ information has yet been provided.

Restricted access
Maciej Janecki, Dawid Dybowski, Daniel Rak, and Lidia Dzierzbicka-Glowacka

Abstract

This paper introduces a new method for finding the top of thermocline (TTD) and halocline (THD) depths that may become a powerful tool for applications in shallow marine basins around the world. The method calculates the moving average of the ocean vertical profile’s short-scale spatial variability (standard deviation) and then processes it to determine the potential depth at which temperature or salinity rapidly changes. The method has been calibrated using an extensive set of data from the ecohydrodynamic model EcoFish. As a result of the calibration, the values of the input parameters that allowed the correct determination of TTD and THD were established. It was confirmed by the validation carried out on the in situ profiles collected by the research vessel S/Y Oceania during statutory cruises in the southern Baltic Sea. The “MovSTD” algorithm was then used to analyze the seasonal variability of the vertical structure of the waters in Gdańsk Deep for temperature and salinity. The thermocline deepening speed was also estimated in the region analyzed.

Restricted access
Huan Mei, Yiquan Qi, Xuhua Cheng, Xiangbai Wu, and Qiang Wang

Abstract

We study a hysteresis western boundary current (WBC) flowing across a gap impinged by a mesoscale eddy, with an island of variable meridional size in the gap, using a 1.5-layer ocean model. The hysteresis curves suggest the island with a larger size facilitates the WBC intrusion by shedding the eddy more easily. Both anticyclonic and cyclonic eddies are able to induce the critical WBC transition from penetration regime to leap regime, and vice versa. The vorticity balance analysis indicates increased (decreased) meridional advection that induces the critical WBC shifting from the eddy shedding (leaping) regime to the leaping (eddy shedding) regime. The meridional size of the island significantly affects the critical WBC transition in terms of the critical strength of the mesoscale eddy. The regime shift from penetration to leap is most sensitive to the eddy upstream of the WBC for small islands and most sensitive to the southern anticyclonic eddy and northern cyclonic eddy for moderate and large islands. It is least sensitive to the central cyclonic eddy for small islands and to the cyclonic eddy upstream of the WBC for moderate and large islands and to the northern anticyclonic eddy regardless of island size. The regime shift from leap to penetration is most sensitive to the cyclonic eddy upstream of the WBC and to the northern anticyclonic eddy. It is least sensitive to the anticyclonic eddy from the south, and the least sensitive location of the cyclonic eddy shifts northward from the gap center as the island size increases.

Restricted access
Hua Zheng, Xiao-Hua Zhu, Chuanzheng Zhang, Ruixiang Zhao, Ze-Nan Zhu, Qiang Ren, Yansong Liu, Feng Nan, and Fei Yu

Abstract

South China Sea (SCS) abyssal circulation largely contributes to water renewal, energy budget, and sedimentary processes in the deep ocean. The three-dimensional abyssal circulation west of the Luzon Strait (LS) in the northern SCS was investigated using an array comprising 27 current- and pressure-recording inverted echo sounders. Over 400 days of measurements from June 2018 to July 2019 showed a narrow and strong (∼70 km, ∼2.3 cm s−1 at 2500 dbar) northward current near the steep eastern boundary, while a wide and weak (∼180 km, ∼1.5 cm s−1 at 2500 dbar) southwestward current lies along the subdued western boundary. The circulation showed conspicuous cyclonic patterns with a volume transport of ∼1.21 ± 0.93 Sv (1 Sv ≡ 106 m3 s−1) and ∼1.59 ± 0.95 Sv below 2500 dbar along the eastern and western boundaries, respectively. The current near the LS was strong in late autumn and early winter but weak in late winter and spring, following the seasonal variation of LS deep-water overflow. However, the southwestward current in the interior SCS was stronger in summer and early autumn but weaker in late winter and early spring. The different seasonal patterns identified near the LS and the interior SCS are attributed to the propagation of seasonal variation. The weak current along the western boundary in August 2018 and February 2019 was dominated by LS deep-water overflow with a time lag of ∼7.5 months. Although eddies in the upper ocean may also contribute to such variation through pressure work, the effect is minor.

Significance Statement

Cyclonic circulation in the deep South China Sea (SCS) largely contributes to water renewal, energy budget, and sedimentary processes and influences the transport of dissolved elements, minerals, and pollutants. As an important part of the SCS throughflow, an in-depth analysis of the SCS abyssal circulation may also contribute to understanding Indonesian Throughflow and global climate change. The three-dimensional abyssal circulation west of the Luzon Strait was investigated using large-scale data from June 2018 to July 2019, which provided unprecedented coverage of abyssal circulation in the northeast SCS. The study provides important observational evidence for the existence of SCS abyssal cyclonic circulation. Detailed spatiotemporal structure of abyssal circulation and its variations are presented, and related dynamic processes are discussed.

Restricted access