Browse
Abstract
A violent tornado occurred in Czechia on 24 June 2021, killing six and causing at least 576 injuries. There were more indirect than direct injuries. The tornado was rated 4 on the international Fujita scale (IF4) using a draft version of the IF scale. This was the first violent tornado in Czechia and one of only 17 violent, i.e., (I)F4 or higher, tornadoes that occurred in Europe since 1950. The tornado reached a width of 3.5 km, the widest on record in Europe. The case presents an important opportunity to investigate the impacts of such a strong tornado in the area, where they are rare, no tornado warnings are issued, and where the building standards are different from the typically investigated tornadoes in the United States. We discuss challenges in organizing the damage survey, which took 3 days and involved meteorologists from three countries. A wind damage survey guide to aid mitigating these was written by the European Severe Storms Laboratory and initiated the development of a wind damage surveying app. The damage survey showed that most of the inhabited buildings built using heavy masonry and rigid ceilings did not collapse in IF2/3 winds, but only with IF4 winds. Eyewitness reports collected after the tornado show that many people were not aware of the risk associated with the tornado. Eventually, most people tried to shelter in the most secure part of the house, but it was often too late. This case highlights the need for better communication of tornado risk to the public in Europe.
Abstract
A violent tornado occurred in Czechia on 24 June 2021, killing six and causing at least 576 injuries. There were more indirect than direct injuries. The tornado was rated 4 on the international Fujita scale (IF4) using a draft version of the IF scale. This was the first violent tornado in Czechia and one of only 17 violent, i.e., (I)F4 or higher, tornadoes that occurred in Europe since 1950. The tornado reached a width of 3.5 km, the widest on record in Europe. The case presents an important opportunity to investigate the impacts of such a strong tornado in the area, where they are rare, no tornado warnings are issued, and where the building standards are different from the typically investigated tornadoes in the United States. We discuss challenges in organizing the damage survey, which took 3 days and involved meteorologists from three countries. A wind damage survey guide to aid mitigating these was written by the European Severe Storms Laboratory and initiated the development of a wind damage surveying app. The damage survey showed that most of the inhabited buildings built using heavy masonry and rigid ceilings did not collapse in IF2/3 winds, but only with IF4 winds. Eyewitness reports collected after the tornado show that many people were not aware of the risk associated with the tornado. Eventually, most people tried to shelter in the most secure part of the house, but it was often too late. This case highlights the need for better communication of tornado risk to the public in Europe.
Abstract
Climate and weather-related disasters in California illustrate the need for immediate climate change action—both mitigation to reduce impacts and adaptation to protect our communities, relatives, and the ecosystems we depend upon. Indigenous frontline communities face even greater threats from climate impacts due to historical and political legacies of environmental injustice. Climate change adaptation actions have proven challenging to implement as communities struggle to access necessary climate data at appropriate scales, identify effective strategies that address community priorities, and obtain resources to act at a whole-community level. In this paper, we present three examples of Indigenous communities in California that have used a climate justice approach to climate change adaptation. These communities are drawing upon community knowledge and expertise to address the challenges of adaptation planning and taking actions that center community priorities. The three cases address emergency preparation and response, cultural burning and fire management, and community organizing and social cohesion. Across these spheres, they illustrate the ways in which a community-based and climate justice-focused approach to adaptation can be effective in addressing current threats while also addressing the legacy of imposed, socially constructed vulnerability and environmental injustices. Because we recognize the need for multiple knowledges and skills in adaptation actions, we include recommendations that have emerged based on what has been learned through these long-standing and engaged participatory research collaborations for climate scientists who wish to contribute to climate justice-focused adaptation efforts by using scientific data to support—not supplant—community efforts, target funding toward genuine community engagement and adaptation actions, and become aware of the historical and political legacies that created the climate vulnerabilities and injustices evident today.
Abstract
Climate and weather-related disasters in California illustrate the need for immediate climate change action—both mitigation to reduce impacts and adaptation to protect our communities, relatives, and the ecosystems we depend upon. Indigenous frontline communities face even greater threats from climate impacts due to historical and political legacies of environmental injustice. Climate change adaptation actions have proven challenging to implement as communities struggle to access necessary climate data at appropriate scales, identify effective strategies that address community priorities, and obtain resources to act at a whole-community level. In this paper, we present three examples of Indigenous communities in California that have used a climate justice approach to climate change adaptation. These communities are drawing upon community knowledge and expertise to address the challenges of adaptation planning and taking actions that center community priorities. The three cases address emergency preparation and response, cultural burning and fire management, and community organizing and social cohesion. Across these spheres, they illustrate the ways in which a community-based and climate justice-focused approach to adaptation can be effective in addressing current threats while also addressing the legacy of imposed, socially constructed vulnerability and environmental injustices. Because we recognize the need for multiple knowledges and skills in adaptation actions, we include recommendations that have emerged based on what has been learned through these long-standing and engaged participatory research collaborations for climate scientists who wish to contribute to climate justice-focused adaptation efforts by using scientific data to support—not supplant—community efforts, target funding toward genuine community engagement and adaptation actions, and become aware of the historical and political legacies that created the climate vulnerabilities and injustices evident today.
Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.
Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.
Abstract
Although many people believe their pain fluctuates with weather conditions, both weather and pain may be associated with time spent outside. For example, pleasant weather may mean that people spend more time outside doing physical activity and are exposed to the weather, leading to more (or less) pain, and poor weather or severe pain may keep people inside, sedentary, and not exposed to the weather. We conducted a smartphone study where participants with chronic pain reported daily pain severity, as well as time spent outside. We address the relationship between four weather variables (temperature, dewpoint temperature, pressure, and wind speed) and pain by proposing a three-step approach to untangle their effects: (i) propose a set of plausible directed acyclic graphs (DAGs) that account for potential roles of time spent outside (e.g., collider, effect modifier, mediator); (ii) analyze the compatibility of the observed data with the assumed model; and (iii) identify the most plausible model by combining evidence from the observed data and domain-specific knowledge. We found that the data do not support time spent outside as a collider or mediator of the relationship between weather variables and pain. On the other hand, time spent outside modifies the effect between temperature and pain, as well as wind speed and pain, with the effect being absent on days that participants spent inside and present if they spent some or all of the day outside. Our results show the utility of using directed acyclic graphs for studying causal inference.
Significance Statement
Three-quarters of people living with chronic pain believe that weather influences their pain. However, people staying inside would not be exposed to the weather outside, and good weather may mean that people are more active outside, leading to more or less pain. To obtain data to calculate how the amount of time spent outside affects the weather–pain relationship, we conducted a 15-month smartphone study collecting daily pain reports and nearby weather for nearly 5000 participants in the United Kingdom. We found that time spent outside modifies the relationship between temperature/wind speed and pain, showing the importance of accounting for other factors when investigating the association between weather and chronic pain, which could guide future research into pain mitigation and management.
Abstract
Although many people believe their pain fluctuates with weather conditions, both weather and pain may be associated with time spent outside. For example, pleasant weather may mean that people spend more time outside doing physical activity and are exposed to the weather, leading to more (or less) pain, and poor weather or severe pain may keep people inside, sedentary, and not exposed to the weather. We conducted a smartphone study where participants with chronic pain reported daily pain severity, as well as time spent outside. We address the relationship between four weather variables (temperature, dewpoint temperature, pressure, and wind speed) and pain by proposing a three-step approach to untangle their effects: (i) propose a set of plausible directed acyclic graphs (DAGs) that account for potential roles of time spent outside (e.g., collider, effect modifier, mediator); (ii) analyze the compatibility of the observed data with the assumed model; and (iii) identify the most plausible model by combining evidence from the observed data and domain-specific knowledge. We found that the data do not support time spent outside as a collider or mediator of the relationship between weather variables and pain. On the other hand, time spent outside modifies the effect between temperature and pain, as well as wind speed and pain, with the effect being absent on days that participants spent inside and present if they spent some or all of the day outside. Our results show the utility of using directed acyclic graphs for studying causal inference.
Significance Statement
Three-quarters of people living with chronic pain believe that weather influences their pain. However, people staying inside would not be exposed to the weather outside, and good weather may mean that people are more active outside, leading to more or less pain. To obtain data to calculate how the amount of time spent outside affects the weather–pain relationship, we conducted a 15-month smartphone study collecting daily pain reports and nearby weather for nearly 5000 participants in the United Kingdom. We found that time spent outside modifies the relationship between temperature/wind speed and pain, showing the importance of accounting for other factors when investigating the association between weather and chronic pain, which could guide future research into pain mitigation and management.
Abstract
The polar regions are facing a wide range of compounding challenges, from climate change to increased human activity. Infrastructure, rescue services, and disaster response capabilities are limited in these remote environments. Relevant and usable weather, water, ice, and climate (WWIC) information is vital for safety, activity success, adaptation, and environmental protection. This has been a key focus for the World Meteorological Organization’s (WMO) Polar Prediction Project (PPP), and in particular its “Societal and Economic Research and Applications” (PPP-SERA) Task Team, which together over a decade have sought to understand polar WWIC information use in relation to operational needs, constraints, and decision contexts to inform the development of relevant services. To understand research progress and gaps on WWIC information use during the PPP (2013–23), we undertook a systematic bibliometric review of aligned scholarly peer-reviewed journal articles (n = 43), examining collaborations, topics, methods, and regional differences. Themes to emerge included activity and context, human factors, information needs, situational awareness, experience, local and Indigenous knowledge, and sharing of information. We observed an uneven representation of disciplinary backgrounds, geographic locations, research topics, and sectoral foci. Our review signifies an overall lack of Antarctic WWIC services research and a dominant focus on Arctic sea ice operations and risks. We noted with concern a mismatch between user needs and services provided. Our findings can help to improve WWIC services’ dissemination, communication effectiveness, and actionable knowledge provision for users and guide future research as the critical need for salient weather services across the polar regions remains beyond the PPP.
Significance Statement
Every day, people in the Arctic and Antarctic use weather, water, ice, and climate information to plan and carry out outdoor activities and operations in a safe way. Despite advances in numerical weather prediction, technology, and product development, barriers to accessing and effectively communicating high-quality usable observations, forecasts, and actionable knowledge remain. Poorer services, prediction accuracy, and interpretation are exacerbated by a lack of integrated social science research on relevant topics and a mismatch between the services provided and user needs. As a result, continued user engagement, research focusing on information use, risk communication, decision-making processes, and the application of science for services remain highly relevant to reducing risks and improving safety for people living, visiting, and working in the polar regions.
Abstract
The polar regions are facing a wide range of compounding challenges, from climate change to increased human activity. Infrastructure, rescue services, and disaster response capabilities are limited in these remote environments. Relevant and usable weather, water, ice, and climate (WWIC) information is vital for safety, activity success, adaptation, and environmental protection. This has been a key focus for the World Meteorological Organization’s (WMO) Polar Prediction Project (PPP), and in particular its “Societal and Economic Research and Applications” (PPP-SERA) Task Team, which together over a decade have sought to understand polar WWIC information use in relation to operational needs, constraints, and decision contexts to inform the development of relevant services. To understand research progress and gaps on WWIC information use during the PPP (2013–23), we undertook a systematic bibliometric review of aligned scholarly peer-reviewed journal articles (n = 43), examining collaborations, topics, methods, and regional differences. Themes to emerge included activity and context, human factors, information needs, situational awareness, experience, local and Indigenous knowledge, and sharing of information. We observed an uneven representation of disciplinary backgrounds, geographic locations, research topics, and sectoral foci. Our review signifies an overall lack of Antarctic WWIC services research and a dominant focus on Arctic sea ice operations and risks. We noted with concern a mismatch between user needs and services provided. Our findings can help to improve WWIC services’ dissemination, communication effectiveness, and actionable knowledge provision for users and guide future research as the critical need for salient weather services across the polar regions remains beyond the PPP.
Significance Statement
Every day, people in the Arctic and Antarctic use weather, water, ice, and climate information to plan and carry out outdoor activities and operations in a safe way. Despite advances in numerical weather prediction, technology, and product development, barriers to accessing and effectively communicating high-quality usable observations, forecasts, and actionable knowledge remain. Poorer services, prediction accuracy, and interpretation are exacerbated by a lack of integrated social science research on relevant topics and a mismatch between the services provided and user needs. As a result, continued user engagement, research focusing on information use, risk communication, decision-making processes, and the application of science for services remain highly relevant to reducing risks and improving safety for people living, visiting, and working in the polar regions.
Abstract
This study utilizes hourly land surface temperature (LST) data from the Geostationary Operational Environmental Satellite (GOES) to analyze the seasonal and diurnal characteristics of surface urban heat island intensity (SUHII) across 120 largest U.S. cities and their surroundings. Distinct patterns emerge in the classification of seasonal daytime SUHII and nighttime SUHII. Specifically, the enhanced vegetation index (EVI) and albedo (ALB) play pivotal roles in influencing these temperature variations. The diurnal cycle of SUHII further reveals different trends, suggesting that climate conditions, urban and nonurban land covers, and anthropogenic activities during nighttime hours affect SUHII peaks. Exploring intracity LST dynamics, the study reveals a significant correlation between urban intensity (UI) and LST, with LST rising as UI increases. Notably, populations identified as more vulnerable by the social vulnerability index (SVI) are found in high UI regions. This results in discernible LST inequality, where the more vulnerable communities are under higher LST conditions, possibly leading to higher heat exposure. This comprehensive study accentuates the significance of tailoring city-specific climate change mitigation strategies, illuminating LST variations and their intertwined societal implications.
Abstract
This study utilizes hourly land surface temperature (LST) data from the Geostationary Operational Environmental Satellite (GOES) to analyze the seasonal and diurnal characteristics of surface urban heat island intensity (SUHII) across 120 largest U.S. cities and their surroundings. Distinct patterns emerge in the classification of seasonal daytime SUHII and nighttime SUHII. Specifically, the enhanced vegetation index (EVI) and albedo (ALB) play pivotal roles in influencing these temperature variations. The diurnal cycle of SUHII further reveals different trends, suggesting that climate conditions, urban and nonurban land covers, and anthropogenic activities during nighttime hours affect SUHII peaks. Exploring intracity LST dynamics, the study reveals a significant correlation between urban intensity (UI) and LST, with LST rising as UI increases. Notably, populations identified as more vulnerable by the social vulnerability index (SVI) are found in high UI regions. This results in discernible LST inequality, where the more vulnerable communities are under higher LST conditions, possibly leading to higher heat exposure. This comprehensive study accentuates the significance of tailoring city-specific climate change mitigation strategies, illuminating LST variations and their intertwined societal implications.
Abstract
The use of oral histories in social scientific approaches to climate change has enabled richly detailed explorations of the situated, meaning-laden dimensions of local experiences and knowledge. But “big data” approaches have been increasingly advocated as a means to scale up understandings from individual projects, through better utilizing large collections of qualitative data sources. This article considers the issues raised by such secondary analysis, using the NOAA Voices Oral History Archives, an online database with a focus on coastal communities and groups thought especially vulnerable to climatic changes. Coupling larger-scale methods such as text mining with more traditional methods such as close reading reveals variations across time and space in the ways people talk about environmental changes, underscoring how memories and experiences shape understandings and the subtlety with which these differences are articulated and culturally inscribed. Looking across multiple collections illuminates those shared understandings, points of contention, and differences between communities that might be obscured if decontextualized, showing the importance of “small data” approaches to big data to fully understand the deeply cultural understandings, perceptions, and histories of environmental changes such as climate change.
Abstract
The use of oral histories in social scientific approaches to climate change has enabled richly detailed explorations of the situated, meaning-laden dimensions of local experiences and knowledge. But “big data” approaches have been increasingly advocated as a means to scale up understandings from individual projects, through better utilizing large collections of qualitative data sources. This article considers the issues raised by such secondary analysis, using the NOAA Voices Oral History Archives, an online database with a focus on coastal communities and groups thought especially vulnerable to climatic changes. Coupling larger-scale methods such as text mining with more traditional methods such as close reading reveals variations across time and space in the ways people talk about environmental changes, underscoring how memories and experiences shape understandings and the subtlety with which these differences are articulated and culturally inscribed. Looking across multiple collections illuminates those shared understandings, points of contention, and differences between communities that might be obscured if decontextualized, showing the importance of “small data” approaches to big data to fully understand the deeply cultural understandings, perceptions, and histories of environmental changes such as climate change.
Abstract
Our goal is to tie climate-scale meteorology to regional physics and ecosystem changes and demonstrate a few resulting impacts to which regional peoples are having to respond in the Alaskan Bering Strait region. The sea ice loss events in the winters of 2017/18 and 2018/19 initiated a series of marine environmental, ecological, and industrial changes through a chain of connected events from jet-stream meanders, storms, southerly winds, warmer sea temperatures, and minimum sea ice cover. Resulting impacts continue as coastal communities respond to ongoing nutritional, cultural, and economic challenges. Global warming potentially initiated these events through a weakened atmospheric Arctic Front. Ecological shifts included a transition/reorganization of the Bering Strait regional marine ecosystem. Subsequent changes included shifts in zooplankton species, increases in large-bodied, predatory fish species moving northward, an ice seal unusual mortality event, and seven consecutive years of multispecies seabird die-offs. These changes in the marine ecosystem create a serious food security concern. Ongoing impacts include large, toxic harmful algal blooms and coastal erosion. Recent changes to the maritime industries of the transboundary waters of the Bering Strait include increased industrial ship traffic, planned development of the Port of Nome, and northward proximity of foreign fishing activity. Projections for the next decades are for an increasing frequency of low sea ice years and continuing ecosystem and industrial transitions that contribute to increasing economic and food security concerns for the 16 coastal communities that compose the Bering Strait region.
Significance Statement
Extreme events in the atmosphere/oceans and resultant record sea ice minimums in 2018 and 2019 were manifested in marine ecosystem transitions and maritime industry impacts. This led to ongoing concerns over the food safety and food security of marine resources essential to the nutritional, cultural, and economic well-being of Alaskan coastal communities of the Bering Strait region. Persistent weakening of the Arctic Front may signal an increased frequency of low sea ice events into the next decades.
Abstract
Our goal is to tie climate-scale meteorology to regional physics and ecosystem changes and demonstrate a few resulting impacts to which regional peoples are having to respond in the Alaskan Bering Strait region. The sea ice loss events in the winters of 2017/18 and 2018/19 initiated a series of marine environmental, ecological, and industrial changes through a chain of connected events from jet-stream meanders, storms, southerly winds, warmer sea temperatures, and minimum sea ice cover. Resulting impacts continue as coastal communities respond to ongoing nutritional, cultural, and economic challenges. Global warming potentially initiated these events through a weakened atmospheric Arctic Front. Ecological shifts included a transition/reorganization of the Bering Strait regional marine ecosystem. Subsequent changes included shifts in zooplankton species, increases in large-bodied, predatory fish species moving northward, an ice seal unusual mortality event, and seven consecutive years of multispecies seabird die-offs. These changes in the marine ecosystem create a serious food security concern. Ongoing impacts include large, toxic harmful algal blooms and coastal erosion. Recent changes to the maritime industries of the transboundary waters of the Bering Strait include increased industrial ship traffic, planned development of the Port of Nome, and northward proximity of foreign fishing activity. Projections for the next decades are for an increasing frequency of low sea ice years and continuing ecosystem and industrial transitions that contribute to increasing economic and food security concerns for the 16 coastal communities that compose the Bering Strait region.
Significance Statement
Extreme events in the atmosphere/oceans and resultant record sea ice minimums in 2018 and 2019 were manifested in marine ecosystem transitions and maritime industry impacts. This led to ongoing concerns over the food safety and food security of marine resources essential to the nutritional, cultural, and economic well-being of Alaskan coastal communities of the Bering Strait region. Persistent weakening of the Arctic Front may signal an increased frequency of low sea ice events into the next decades.