Browse

You are looking at 31 - 40 of 2,838 items for :

  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
Luke J. LeBel, Brian H. Tang, and Ross A. Lazear

Abstract

The complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York.

The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.

Restricted access
Erin E. Thomas, Malte Müller, Patrik Bohlinger, Yurii Batrak, and Nicholas Szapiro

Abstract

Accurately simulating the interactions between the components of a coupled Earth modelling system (atmosphere, sea-ice, and wave) on a kilometer-scale resolution is a new challenge in operational numerical weather prediction. It is difficult due to the complexity of interactive mechanisms, the limited accuracy of model components and scarcity of observations available for assessing relevant coupled processes. This study presents a newly developed convective-scale atmosphere-wave coupled forecasting system for the European Arctic. The HARMONIE-AROME configuration of the ALADIN-HIRLAM numerical weather prediction system is coupled to the spectral wave model WAVEWATCH III using the OASIS3 model coupling toolkit. We analyze the impact of representing the kilometer-scale atmosphere-wave interactions through coupled and uncoupled forecasts on a model domain with 2.5 km spatial resolution. In order to assess the coupled model’s accuracy and uncertainties we compare 48-hour model forecasts against satellite observational products such as Advanced Scatterometer 10 m wind speed, and altimeter based significant wave height. The fully coupled atmosphere-wave model results closely match both satellite-based wind speed and significant wave height observations as well as surface pressure and wind speed measurements from selected coastal station observation sites. Furthermore, the coupled model contains smaller standard deviation of errors in both 10m wind speed and significant wave height parameters when compared to the uncoupled model forecasts. Atmosphere and wave coupling reduces the short term forecast error variability of 10 m wind speed and significant wave height with the greatest benefit occurring for high wind and wave conditions.

Restricted access
Christoph Mony, Lukas Jansing, and Michael Sprenger

Abstract

This study explores the possibilities of employing machine learning algorithms to predict foehn occurrence in Switzerland at a north-Alpine (Altdorf) and south-Alpine (Lugano) station from its synoptic fingerprint in reanalysis data and climate simulations. This allows for an investigation on a potential future shift in monthly foehn frequencies. First, inputs from various atmospheric fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERAI) were used to train an XGBoost model. Here, similar predictive performance to previous work was achieved, showing that foehn can accurately be diagnosed from the coarse synoptic situation. In the next step, the algorithm was generalized to predict foehn based on Community Earth System Model (CESM) ensemble simulations of a present-day and warming future climate. The best generalization between ERAI and CESM was obtained by including the present-day data in the training procedure and simultaneously optimizing two objective functions, namely the negative log loss and squared mean loss, on both datasets, respectively. It is demonstrated that the same synoptic fingerprint can be identified in CESM climate simulation data. Finally, predictions for present-day and future simulations were verified and compared for statistical significance. Our model is shown to produce valid output for most months, revealing that south foehn in Altdorf is expected to become more common during spring, while north foehn in Lugano is expected to become more common during summer.

Restricted access
Marvin Kähnert, Harald Sodemann, Wim C. de Rooy, and Teresa M. Valkonen

Abstract

Forecasts of marine cold air outbreaks critically rely on the interplay of multiple parameterisation schemes to represent sub-grid scale processes, including shallow convection, turbulence, and microphysics. Even though such an interplay has been recognised to contribute to forecast uncertainty, a quantification of this interplay is still missing. Here, we investigate the tendencies of temperature and specific humidity contributed by individual parameterisation schemes in the operational weather prediction model AROME-Arctic. From a case study of an extensive marine cold air outbreak over the Nordic Seas, we find that the type of planetary boundary layer assigned by the model algorithm modulates the contribution of individual schemes and affects the interactions between different schemes. In addition, we demonstrate the sensitivity of these interactions to an increase or decrease in the strength of the parameterised shallow convection. The individual tendencies from several parameterisations can thereby compensate each other, sometimes resulting in a small residual. In some instances this residual remains nearly unchanged between the sensitivity experiments, even though some individual tendencies differ by up to an order of magnitude. Using the individual tendency output, we can characterise the subgrid-scale as well as grid-scale responses of the model and trace them back to their underlying causes. We thereby highlight the utility of individual tendency output for understanding process-related differences between model runs with varying physical configurations and for the continued development of numerical weather prediction models.

Restricted access
Evan S. Bentley, Richard L. Thompson, Barry R. Bowers, Justin G. Gibbs, and Steven E. Nelson

Abstract

Previous work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.

Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.

Restricted access
Jason M. English, David D. Turner, Trevor I. Alcott, William R. Moninger, Janice L. Bytheway, Robert Cifelli, and Melinda Marquis

Abstract

Improved forecasts of Atmospheric River (AR) events, which provide up to half the annual precipitation in California, may reduce impacts to water supply, lives, and property. We evaluate Quantitative Precipitation Forecasts (QPF) from the High-Resolution Rapid Refresh model version 3 (HRRRv3) and version 4 (HRRRv4) for five AR events that occurred in Feb-Mar 2019 and compare them to Quantitative Precipitation Estimates (QPE) from Stage IV and Mesonet products. Both HRRR versions forecast spatial patterns of precipitation reasonably well, but are drier than QPE products in the Bay Area and wetter in the Sierra Nevada range. The HRRR dry bias in the Bay Area may be related to biases in the model temperature profile, while IWV, wind speed, and wind direction compare reasonably well. In the Sierra Nevada range, QPE and QPF agree well at temperatures above freezing. Below freezing, the discrepancies are due in part to errors in the QPE products, which are known to underestimate frozen precipitation in mountainous terrain. HRRR frozen QPF accuracy is difficult to quantify, but the model does have wind speed and wind direction biases near the Sierra Nevada range. HRRRv4 is overall more accurate than HRRRv3, likely due to data assimilation improvements, and possibly physics improvements. Applying a Neighborhood Maximum method impacted performance metrics, but did not alter general conclusions, suggesting closest grid box evaluations may be adequate for these types of events. Improvements to QPF in the Bay Area and QPE/QPF in the Sierra Nevada range would be particularly useful to provide better understanding of AR events.

Restricted access
Kevin Bachmann and Ryan D. Torn

Abstract

Tropical cyclones are associated with a variety of significant social hazards, including wind, rain, and storm surge. Despite this, most of the model validation effort has been directed toward track and intensity forecasts. In contrast, few studies have investigated the skill of state-of-the-art, high-resolution ensemble prediction systems in predicting associated TC hazards, which is crucial since TC position and intensity do not always correlate with the TC-related hazards, and can result in impacts far from the actual TC center. Furthermore, dynamic models can provide flow-dependent uncertainty estimates, which in turn can provide more specific guidance to forecasters than statistical uncertainty estimates based on past errors. This study validates probabilistic forecasts of wind speed and precipitation hazards derived from the HWRF ensemble prediction system and compares its skill to forecasts by the stochastically-based operational Monte Carlo Model (NHC), the IFS (ECMWF), and the GEFS (NOAA) in use 2017-2019. Wind and Precipitation forecasts are validated against NHC best track wind radii information and the National Stage IV QPE Product. The HWRF 34 kn wind forecasts have comparable skill to the global models up to 60 h lead time before HWRF skill decreases, possibly due to detrimental impacts of large track errors. In contrast, HWRF has comparable quality to its competitors for higher thresholds of 50 kn and 64 kn throughout 120 h lead time. In terms of precipitation hazards, HWRF performs similar or better than global models, but depicts higher, although not perfect, reliability, especially for events over 5 in120h−1. Post-processing, like Quantile Mapping, improves forecast skill for all models significantly and can alleviate reliability issues of the global models.

Restricted access
Jing Zhang, Jie Feng, Hong Li, Yuejian Zhu, Xiefei Zhi, and Feng Zhang

Abstract

Operational and research applications generally use the consensus approach for forecasting the track and intensity of tropical cyclones (TCs) due to the spatial displacement of the TC location and structure in ensemble member forecasts. This approach simply averages the location and intensity information for TCs in individual ensemble members, which is distinct from the traditional pointwise arithmetic mean (AM) method for ensemble forecast fields. The consensus approach, despite having improved skills relative to the AM in predicting the TC intensity, cannot provide forecasts of the TC spatial structure. We introduced a unified TC ensemble mean forecast based on the feature-oriented mean (FM) method to overcome the inconsistency between the AM and consensus forecasts. FM spatially aligns the TC-related features in each ensemble field to their geographical mean positions before the amplitude of their features is averaged.

We select 219 TC forecast samples during the summer of 2017 for an overall evaluation of the FM performance. The results show that the TC track consensus forecasts can differ from AM track forecasts by hundreds of kilometers at long lead times. AM also gives a systematic and statistically significant underestimation of the TC intensity compared with the consensus forecast. By contrast, FM has a very similar TC track and intensity forecast skill to the consensus approach. FM can also provide the corresponding ensemble mean forecasts of the TC spatial structure that are significantly more accurate than AM for the low- and upper-level circulation in TCs. The FM method has the potential to serve as a valuable unified ensemble mean approach for the TC prediction.

Open access
Diego Pons, Ángel G. Muñoz, Ligia M. Meléndez, Mario Chocooj, Rosario Gómez, Xandre Chourio, and Carmen González Romero

Abstract

The provision of climate services has the potential to generate adaptive capacity and help coffee farmers become or remain profitable by integrating climate information in a risk-management framework. Yet, in order to achieve this goal, it is necessary to identify the local demand for climate information, the relationships between coffee yield and climate variables, farmers’ perceptions, and to examine the potential actions that can be realistically put in place by farmers at the local level. In this study, we assessed the climate information demands from coffee farmers and their perception on the climate impacts to coffee yield in the Samalá watershed in Guatemala. After co-identifying the related candidate climate predictors, we propose an objective, flexible forecast system for coffee yield based on precipitation. The system, known as NextGen, analyzes multiple historical climate drivers to identify candidate predictors, and provides both deterministic and probabilistic forecasts for the target season. To illustrate the approach, a NextGen implementation is conducted in the Samalá watershed in southwestern Guatemala. The results suggest that accumulated June-July-August precipitation provides the highest predictive skill associated with coffee yield for this region. In addition to a formal cross-validated skill assessment, retrospective forecasts for the period 1989-2009 were compared to agriculturalists’ perception on the climate impacts to coffee yield at the farm level. We conclude with examples of how demand-based climate service provision in this location can inform adaptation strategies like optimum shade, pest control, and fertilization schemes months in advance. These potential adaptation strategies were validated by local agricultural technicians at the study site.

Open access
Dian Nur Ratri, Kirien Whan, and Maurice Schmeits

Abstract

The seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor.

Restricted access