Browse

You are looking at 41 - 50 of 6,932 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Saulo M. Soares, Sarah T. Gille, Teresa K. Chereskin, Eric Firing, Jules Hummon, and Cesar B. Rocha

Abstract

Kinetic energy associated with inertia–gravity waves (IGWs) and other ageostrophic phenomena often overwhelms kinetic energy due to geostrophic motions for wavelengths on the order of tens of kilometers. Understanding the dependencies of the wavelength at which balanced (geostrophic) variability ceases to be larger than unbalanced variability is important for interpreting high-resolution altimetric data. This wavelength has been termed the transition scale. This study uses acoustic Doppler current profiler (ADCP) data along with auxiliary observations and a numerical model to investigate the transition scale in the eastern tropical Pacific and the mechanisms responsible for its regional and seasonal variations. One-dimensional kinetic energy wavenumber spectra are separated into rotational and divergent components, and subsequently into vortex and wave components. The divergent motions, most likely predominantly IGWs, account for most of the energy at wavelengths less than 100 km. The observed regional and seasonal patterns in the transition scale are consistent with those from a high-resolution global simulation. Observations, however, show weaker seasonality, with only modest wintertime increases in vortex energy. The ADCP-inferred IGW wavenumber spectra suggest that waves with near-inertial frequency dominate the unbalanced variability, while in model output, internal tides strongly influence the wavenumber spectrum. The ADCP-derived transition scales from the eastern tropical Pacific are typically in the 100–200-km range.

Open access
Ajitha Cyriac, Helen E. Phillips, Nathaniel L. Bindoff, and Kurt Polzin

Abstract

This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.

Open access
Kerstin Cullen, Emily Shroyer, and Larry O’Neill

Abstract

The Sri Lanka Dome is a cyclonic recirculation feature in the Southwest Monsoon Current system in the southern Bay of Bengal. Cooler sea surface temperature (SST) in the vicinity of this system is often denoted as the Bay of Bengal “Cold Pool.” Although the wind shadow of Sri Lanka creates a region of strong positive wind stress curl, both sea level height dynamics and the distribution of cool SST cannot be explained by wind stress curl alone via traditional Ekman pumping. Moreover, the Cold Pool region is often aligned with the eastern portion of the Sri Lanka Dome, as defined by sea surface height. Previous work has attributed the spatial SST pattern to lateral advection. In this analysis, we explore whether low-latitude weakly nonlinear “vorticity” Ekman pumping could be an explanation for both cooling and observed changes in sea level height in the southwest Bay of Bengal. We show that weakly nonlinear upwelling, calculated from ERA5 and AVISO geostrophic currents, collocates with changes in sea level height (and presumably isopycnals). While the SST signal is sensitive to several factors including the net surface flux, regional upwelling explains changes in AVISO sea level height if the nonlinear terms are included, in both the Sri Lanka Dome and the region of the Southwest Monsoon Current.

Restricted access
Geoffrey J. Stanley and David P. Marshall

Abstract

Downstream of Drake Passage, the Antarctic Circumpolar Current (ACC) veers abruptly northward along the continental slope of South America. This spins down the ACC, akin to the western boundary currents of ocean gyres. During this northward excursion, the mean potential vorticity (PV) increases dramatically (decreases in magnitude) by up to a factor of 2 along mean geostrophic streamlines on middepth buoyancy surfaces. This increase is driven by drag near the continental slope, or by breaking eddies further offshore, and is balanced by a remarkably steady, eddy-driven decrease of mean PV along these northern circumpolar streamlines in the open ocean. We show how two related eddy processes that are fundamental to ACC dynamics—poleward buoyancy fluxes and downward fluxes of eastward momentum—are also concomitant with materially forcing PV to increase on the northern flank of a jet at middepth, and decrease on the southern flank. For eddies to drive the required mean PV decrease along northern streamlines, the ACC merges with the subtropical gyres to the north, so these streamlines inhabit the southern flanks of the combined ACC–gyre jets. We support these ideas by analyzing the time-mean PV and its budget along time-mean geostrophic streamlines in the Southern Ocean State Estimate. Our averaging formalism is Eulerian, to match the model’s numerics. The thickness-weighted average is preferable, but its PV budget cannot be balanced using Eulerian 5-day averaged diagnostics, primarily because the z-level buoyancy and continuity equations’ delicate balances are destroyed upon transformation into the buoyancy-coordinate thickness equation.

Significance Statement

The Antarctic Circumpolar Current is the world’s largest ocean current and a key controller of Earth’s climate. As the westerly winds that drive this current shift poleward under global warming, it is vital to know whether the current will follow. To begin addressing this, we study the current’s fundamental dynamics, and constraints, under present-day conditions. By analyzing angular momentum and stratification together, we show that the current is weakened near boundaries and strengthened by eddies elsewhere. The strengthening effects of eddies are isolated to the current by merging the current with oceanic gyres to the north. This gives a new perspective on why the current travels so far northward alongside South America, and may provide dynamical constraints on future changes.

Open access
Zheen Zhang, Thomas Pohlmann, and Xueen Chen

Abstract

The characteristics and variability of intraseasonal internal coastal Kelvin waves (CKWs) along the Bay of Bengal (BoB) waveguide are investigated in the context of global warming by employing a regional ocean model. The analyzed period covers 120 years from 1980 to 2099, which includes the historical scenario and the RCP8.5 scenario. CKW information is successfully extracted from the temperature anomalies along the pycnocline by applying a newly developed methodology. The analysis reveals that intraseasonal CKWs in the BoB are highly in accordance with the intraseasonal zonal wind stress in the western equatorial Indian Ocean; the downwelling CKW lags the equatorial intraseasonal westerly winds, and the upwelling CKW lags the equatorial intraseasonal easterly winds. The CKWs significantly affect subsurface characteristics at the eastern BoB boundary, and the weakening of CKWs near the Irrawaddy Delta tip is a general feature occurring in the subsurface. With respect to the long-term scale, the occurrence of significant CKWs is predicted to be more frequent in the future under the high emissions pathway. Remarkably, the monthly climatology of CKWs varies over time; unlike the first two 30-yr analyzed periods, significant CKWs are predicted to mainly occur around August during the last two 30-yr periods due to the corresponding variabilities in the equatorial wind field, suggesting that the BoB characteristics may greatly deviate from the current climatological state.

Open access
Yidongfang Si, Andrew L. Stewart, and Ian Eisenman

Abstract

The Antarctic Slope Current (ASC) plays a central role in redistributing water masses, sea ice, and tracer properties around the Antarctic margins, and in mediating cross-slope exchanges. While the ASC has historically been understood as a wind-driven circulation, recent studies have highlighted important momentum transfers due to mesoscale eddies and tidal flows. Furthermore, momentum input due to wind stress is transferred through sea ice to the ASC during most of the year, yet previous studies have typically considered the circulations of the ocean and sea ice independently. Thus, it remains unclear how the momentum input from the winds is mediated by sea ice, tidal forcing, and transient eddies in the ocean, and how the resulting momentum transfers serve to structure the ASC. In this study the dynamics of the coupled ocean–sea ice–ASC circulation are investigated using high-resolution process-oriented simulations and interpreted with the aid of a reduced-order model. In almost all simulations considered here, sea ice redistributes almost 100% of the wind stress away from the continental slope, resulting in approximately identical sea ice and ocean surface flows in the core of the ASC in a fully spun-up equilibrium state. This ice–ocean coupling results from suppression of vertical momentum transfer by mesoscale eddies over the continental slope, which allows the sea ice to accelerate the ocean surface flow until the speeds coincide. Tidal acceleration of the along-slope flow exaggerates this effect and may even result in ocean-to-ice momentum transfer. The implications of these findings for along- and across-slope transport of water masses and sea ice around Antarctica are discussed.

Restricted access
Yeqiang Shu, Jinghong Wang, Huijie Xue, Rui Xin Huang, Ju Chen, Dongxiao Wang, Qiang Wang, Qiang Xie, and Weiqiang Wang

Abstract

Strong subinertial variability near a seamount at the Xisha Islands in the South China Sea was revealed by mooring observations from January 2017 to January 2018. The intraseasonal deep flows presented two significant frequency bands, with periods of 9–20 and 30–120 days, corresponding to topographic Rossby waves (TRWs) and deep eddies, respectively. The TRW and deep eddy signals explained approximately 60% of the kinetic energy of the deep subinertial currents. The TRWs at the Ma, Mb, and Mc moorings had 297, 262, and 274 m vertical trapping lengths, and ∼43, 38, and 55 km wavelengths, respectively. Deep eddies were independent from the upper layer, with the largest temperature anomaly being >0.4°C. The generation of the TRWs was induced by mesoscale perturbations in the upper layer. The interaction between the cyclonic–anticyclonic eddy pair and the seamount topography contributed to the generation of deep eddies. Owing to the potential vorticity conservation, the westward-propagating tilted interface across the eddy pair squeezed the deep-water column, thereby giving rise to negative vorticity west of the seamount. The strong front between the eddy pair induced a northward deep flow, thereby generating a strong horizontal velocity shear because of lateral friction and enhanced negative vorticity. Approximately 4 years of observations further confirmed the high occurrence of TRWs and deep eddies. TRWs and deep eddies might be crucial for deep mixing near rough topographies by transferring mesoscale energy to small scales.

Restricted access
Xiaohui Zhou, Tetsu Hara, Isaac Ginis, Eric D’Asaro, Je-Yuan Hsu, and Brandon G. Reichl

Abstract

The drag coefficient under tropical cyclones and its dependence on sea states are investigated by combining upper-ocean current observations [using electromagnetic autonomous profiling explorer (EM-APEX) floats deployed under five tropical cyclones] and a coupled ocean–wave (Modular Ocean Model 6–WAVEWATCH III) model. The estimated drag coefficient averaged over all storms is around 2–3 × 10−3 for wind speeds of 25–55 m s−1. While the drag coefficient weakly depends on wind speed in this wind speed range, it shows stronger dependence on sea states. In particular, it is significantly reduced when the misalignment angle between the dominant wave direction and the wind direction exceeds about 45°, a feature that is underestimated by current models of sea state–dependent drag coefficient. Since the misaligned swell is more common in the far front and in the left-front quadrant of the storm (in the Northern Hemisphere), the drag coefficient also tends to be lower in these areas and shows a distinct spatial distribution. Our results therefore support ongoing efforts to develop and implement sea state–dependent parameterizations of the drag coefficient in tropical cyclone conditions.

Open access
F. Sévellec, A. Colin de Verdière, and N. Kolodziejczyk

Abstract

We use an analog method, based on displacements of Argo floats at their parking depth (nominally located around 1000 dbar) from the ANDRO dataset, to compute continuous, likely trajectories and estimate the Lagrangian dispersion. From this, we find that the horizontal diffusivity coefficient has a median value around 500 m2 s−1 but is highly variable in space, reaching values from 100 m2 s−1 in the gyre interior to 40 000 m2 s−1 in a few specific locations (in the Zapiola Gyre and in the Agulhas Current retroflection). Our analysis suggests that the closure for diffusivity is proportional to eddy kinetic energy (or square of turbulent velocity) rather than (absolute) turbulent velocity. It is associated with a typical turbulent time scale of 4–5.5 days, which is noticeably quite constant over the entire globe, especially away from coherent intense currents. The diffusion is anisotropic in coherent intense currents and around the equator, with a primary direction of diffusion consistent with the primary direction of horizontal velocity variance. These observationally based horizontal diffusivity estimations, and the suggested eddy kinetic energy closure, can be used for constraining, testing, and validating eddy turbulence parameterization.

Restricted access
Erica Rosenblum, Julienne Stroeve, Sarah T. Gille, Camille Lique, Robert Fajber, L. Bruno Tremblay, Ryan Galley, Thiago Loureiro, David G. Barber, and Jennifer V. Lukovich

Abstract

The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies to elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing.

Open access