Browse

You are looking at 51 - 60 of 61 items for :

  • DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation x
  • Refine by Access: All Content x
Clear All
Adam Sobel
,
Shuguang Wang
, and
Daehyun Kim

Abstract

The authors analyze the column-integrated moist static energy budget over the region of the tropical Indian Ocean covered by the sounding array during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment in late 2011. The analysis is performed using data from the sounding array complemented by additional observational datasets for surface turbulent fluxes and atmospheric radiative heating. The entire analysis is repeated using the ECMWF Interim Re-Analysis (ERA-Interim). The roles of surface turbulent fluxes, radiative heating, and advection are quantified for the two MJO events that occurred in October and November using the sounding data; a third event in December is also studied in the ERA-Interim data.

These results are consistent with the view that the MJO’s moist static energy anomalies grow and are sustained to a significant extent by the radiative feedbacks associated with MJO water vapor and cloud anomalies and that propagation of the MJO is associated with advection of moist static energy. Both horizontal and vertical advection appear to play significant roles in the events studied here. Horizontal advection strongly moistens the atmosphere during the buildup to the active phase of the October event when the low-level winds switch from westerly to easterly. Horizontal advection strongly dries the atmosphere in the wake of the active phases of the November and December events as the westerlies associated with off-equatorial cyclonic gyres bring subtropical dry air into the convective region from the west and north. Vertical advection provides relative moistening ahead of the active phase and drying behind it, associated with an increase of the normalized gross moist stability.

Full access
Wen-wen Tung
,
Dimitrios Giannakis
, and
Andrew J. Majda

Abstract

This work studies the significance of north–south asymmetry in convection associated with the 20–90-day Madden–Julian oscillation (MJO) propagating across the equatorial Indo-Pacific warm pool region. Satellite infrared brightness temperature data in the tropical belt for the period 1983–2006 were decomposed into components symmetric and antisymmetric about the equator. Using a recent nonlinear objective method called nonlinear Laplacian spectral analysis, modes of variability were extracted representing symmetric and antisymmetric features of MJO convection signals, along with a plethora of other modes of tropical convective variability spanning diurnal to interannual time scales. The space–time reconstruction of these modes during the 1992/93 Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) period is described in detail. In particular, the boreal winter MJO emerges as a single pair of modes in both symmetric and antisymmetric convection signals. Both signals originate in the Indian Ocean around 60°E. They coexist for all significant MJO events with a varying degree of relative importance, which is affected by ENSO. The symmetric signals tend to be suppressed when crossing the Maritime Continent, while the antisymmetric signals are not as inhibited. Their differences in peak phase and propagation speed suggest fundamental differences in the underlying mechanisms. The multiscale interactions between the diurnal, MJO, and ENSO modes of convection were studied. It was found that the symmetric component of MJO convection appears out of phase with the symmetric component of the diurnal cycle, while the antisymmetric component of MJO convection is in phase with the antisymmetric diurnal cycle. The former relationship likely breaks down during strong El Niño events, and both relationships likely break down during prolonged La Niña events.

Full access
James N. Moum
,
Simon P. de Szoeke
,
William D. Smyth
,
James B. Edson
,
H. Langley DeWitt
,
Aurélie J. Moulin
,
Elizabeth J. Thompson
,
Christopher J. Zappa
,
Steven A. Rutledge
,
Richard H. Johnson
, and
Christopher W. Fairall

The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.

Full access
Weixin Xu
and
Steven A. Rutledge

Abstract

This study investigates the convective population and environmental conditions during three MJO events over the central Indian Ocean in late 2011 using measurements collected from the Research Vessel (R/V) Roger Revelle deployed in Dynamics of the MJO (DYNAMO). Radar-based rainfall estimates from the Revelle C-band radar are first placed in the context of larger-scale Tropical Rainfall Measuring Mission (TRMM) rainfall data to demonstrate that the reduced Revelle radar range captured the MJO convective evolution. Time series analysis and MJO phase-based composites of Revelle measurements both support the “recharge–discharge” MJO theory. Time series of echo-top heights indicate that convective deepening during the MJO onset occurs over a 12–16-day period. Composite statistics show evident recharging–discharging features in convection and the environment. Population of shallow/isolated convective cells, SST, CAPE, and the lower-tropospheric moisture increase (recharge) substantially approximately two to three phases prior to the MJO onset. Deep and intense convection and lightning peak in phase 1 when the sea surface temperature and CAPE are near maximum values. However, cells in this phase are not well organized and produce little stratiform rain, possibly owing to reduced shear and a relatively dry upper troposphere. The presence of deep convection leads the mid- to upper-tropospheric humidity by one to two phases, suggesting its role in moistening these levels. During the MJO onset (i.e., phase 2), the mid- to upper troposphere becomes very moist, and precipitation, radar echo-top heights, and the mesoscale extent of precipitation all increase and obtain peak values. Persistent heavy precipitation in these active periods helps reduce the SST and dry/stabilize (or discharge) the atmosphere.

Full access
Jian Ling
,
Peter Bauer
,
Peter Bechtold
,
Anton Beljaars
,
Richard Forbes
,
Frederic Vitart
,
Marcela Ulate
, and
Chidong Zhang

Abstract

This study introduces a concept of global versus local forecast skill of the Madden–Julian oscillation (MJO). The global skill, measured by a commonly used MJO index [the Real-time Multivariate MJO (RMM)], evaluates the model’s capability of forecasting global patterns of the MJO, with an emphasis on the zonal wind fields. The local skill is measured by a method of tracking the eastward propagation of MJO precipitation. It provides quantitative information of the strength, propagation speed, and timing of MJO precipitation in a given region, such as the Indian Ocean. Both global and local MJO forecast skills are assessed for ECMWF forecasts of three MJO events during the 2011–12 Dynamics of the MJO (DYNAMO) field campaign. Characteristics of error growth differ substantially between global and local MJO forecast skills, and between the three MJO quantities (strength, speed, and timing) of the local skill measure. They all vary considerably among the three MJO events. Deterioration in global forecast skill for these three events appears to be related to poor local skill in forecasting the propagation speed of MJO precipitation. The global and local MJO forecast skill measures are also applied to evaluate numerical experiments of observation denial, humidity relaxation, and forcing by daily perturbations in sea surface temperature (SST). The results suggest that forecast skill or errors of convective initiation of the three MJO events have global origins. Effects of local (Indian Ocean) factors, such as enhanced observations in the initial conditions, variability of tropospheric humidity and tropical SST, on forecasts of MJO initiation and propagation are limited.

Full access
George N. Kiladis
,
Juliana Dias
,
Katherine H. Straub
,
Matthew C. Wheeler
,
Stefan N. Tulich
,
Kazuyoshi Kikuchi
,
Klaus M. Weickmann
, and
Michael J. Ventrice

Abstract

Two univariate indices of the Madden–Julian oscillation (MJO) based on outgoing longwave radiation (OLR) are developed to track the convective component of the MJO while taking into account the seasonal cycle. These are compared with the all-season Real-time Multivariate MJO (RMM) index of Wheeler and Hendon derived from a multivariate EOF of circulation and OLR. The gross features of the OLR and circulation of composite MJOs are similar regardless of the index, although RMM is characterized by stronger circulation. Diversity in the amplitude and phase of individual MJO events between the indices is much more evident; this is demonstrated using examples from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign and the Year of Tropical Convection (YOTC) virtual campaign. The use of different indices can lead to quite disparate conclusions concerning MJO timing and strength, and even as to whether or not an MJO has occurred. A disadvantage of using daily OLR as an EOF basis is that it is a much noisier field than the large-scale circulation, and filtering is necessary to obtain stable results through the annual cycle. While a drawback of filtering is that it cannot be done in real time, a reasonable approximation to the original fully filtered index can be obtained by following an endpoint smoothing method. When the convective signal is of primary interest, the authors advocate the use of satellite-based metrics for retrospective analysis of the MJO for individual cases, as well as for the analysis of model skill in initiating and evolving the MJO.

Full access
Zhe Feng
,
Sally A. McFarlane
,
Courtney Schumacher
,
Scott Ellis
,
Jennifer Comstock
, and
Nitin Bharadwaj

Abstract

To improve understanding of the convective processes key to the Madden–Julian oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and the Atmospheric Radiation Measurement Program (ARM) MJO Investigation Experiment (AMIE) collected 4 months of observations from three radars—the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), and Ka-band ARM zenith radar (KAZR)—along with radiosonde and comprehensive surface meteorological instruments on Addu Atoll, Maldives, in the tropical Indian Ocean. One DYNAMO/AMIE hypothesis suggests that the evolution of shallow and congestus cloud populations is essential to the initiation of the MJO. This study focuses on evaluating the ability of these three radars to document the full spectrum of cloud populations and to construct a merged cloud–precipitation radar dataset that can be used to test this hypothesis. Comparisons between collocated observations from the three radars show that KAZR provides the only reliable estimate of shallow clouds, while S-Pol/SMART-R can reasonably detect congestus within the 30–50-km range in addition to precipitating deep clouds. On the other hand, KAZR underestimates cloud-top heights due to rainfall attenuation in ~34% of the precipitating clouds, and an empirical method to correct KAZR cloud-top height bias is proposed. Finally, a merged KAZR–S-Pol dataset is produced to provide improved cloud-top height estimates, total hydrometeor microphysics, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during DYNAMO/AMIE can be reliably constructed and, together with complimentary radiosonde data, it can be used to study the role of shallow and congestus clouds in the initiation of the MJO.

Full access
Nick Guy
and
David P. Jorgensen

Abstract

This study presents characteristics of convective systems observed during the Dynamics of the Madden–Julian oscillation (DYNAMO) experiment by the instrumented NOAA WP-3D aircraft. Nine separate missions, with a focus on observing mesoscale convective systems (MCSs), were executed to obtain data in the active and inactive phase of a Madden–Julian oscillation (MJO) in the Indian Ocean. Doppler radar and in situ thermodynamic data are used to contrast the convective system characteristics during the evolution of the MJO. Isolated convection was prominent during the inactive phases of the MJO, with deepening convection during the onset of the MJO. During the MJO peak, convection and stratiform precipitation became more widespread. A larger population of deep convective elements led to a larger area of stratiform precipitation. As the MJO decayed, convective system top heights increased, though the number of convective systems decreased, eventually transitioning back to isolated convection. A distinct shift of echo top heights and contoured frequency-by-altitude diagram distributions of radar reflectivity and vertical wind speed indicated that some mesoscale characteristics were coupled to the MJO phase. Convective characteristics in the climatological initiation region (Indian Ocean) were also apparent. Comparison to results from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) in the western Pacific indicated that DYNAMO MCSs were linearly organized more parallel to the low-level shear and without strong cold pools than in TOGA COARE. Three-dimensional MCS airflow also showed a different dynamical structure, with a lack of the descending rear inflow present in shear perpendicularly organized TOGA COARE MCSs. Weaker, but deeper updrafts were observed in DYNAMO.

Full access
Brandon W. Kerns
and
Shuyi S. Chen

Abstract

Dynamics of the Madden–Julian oscillation (DYNAMO) was conducted over the equatorial Indian Ocean (IO) from October 2011 to March 2012. During mid- to late November, a strong Madden–Julian oscillation (MJO) event, denoted MJO-2, initiated in the western IO and passed through the DYNAMO observation array. Dry air intrusions associated with synoptic variability in the equatorial region played a key role in the evolution of MJO-2. First, a sharp dry air intrusion surging from the subtropics into the equatorial region suppresses convection in the ITCZ south of the equator. This diminishes subsidence on the equator associated with the ITCZ convection, which leads to an equatorward shift of convection. It is viewed as a contributing factor for the onset of equatorial convection in MJO-2. Once the MJO convection is established, a second type of dry air intrusion is related to synoptic gyres within the MJO convective envelope. The westward-propagating gyres draw drier air from the subtropics into the equatorial region on the west side of the MJO-2. This dry air intrusion contributes to a 1–2-day break in the rainfall during the active phase of MJO-2. Furthermore, the dry air intrusion suppresses convection in the westerlies of the MJO in the IO. This favors the abrupt shutdown of MJO convection during transition to the suppressed phase in DYNAMO. The two types of dry air intrusions can redistribute convection from the ITCZ to the equator and favor the eastward propagation of the MJO convection. Further study of multiple MJO events is necessary to determine the generality of these findings.

Full access
Michael S. Pritchard
and
Christopher S. Bretherton

Abstract

The authors investigate the hypothesis that horizontal moisture advection is critical to the eastward propagation of the Madden–Julian oscillation (MJO). Consistent diagnostic evidence has been found in recent MJO-permitting global models viewed from the moisture-mode dynamical paradigm. To test this idea in a causal sense, tropical moisture advection by vorticity anomalies is artificially modulated in a superparameterized global model known to produce a realistic MJO signal. Boosting horizontal moisture advection by tropical vorticity anomalies accelerates and amplifies the simulated MJO in tandem with reduced environmental gross moist stability. Limiting rotational horizontal moisture advection shuts the MJO down. These sensitivities are robust in that they are nearly monotonic with respect to the control parameter and emerge despite basic-state sensitivities favoring the opposite response. Speedup confirms what several diagnostic lines of evidence already suggest—that anomalous moisture advection is fundamental to MJO propagation. The rotational component is shown to be especially critical. Amplification further suggests it may play a role in adiabatically maintaining the MJO.

Full access