Browse

You are looking at 51 - 60 of 386 items for :

  • Earth Interactions x
  • Refine by Access: All Content x
Clear All
Gregory J. McCabe, David M. Wolock, Gregory T. Pederson, Connie A. Woodhouse, and Stephanie McAfee

Abstract

The upper Colorado River basin (UCRB) is one of the primary sources of water for the western United States, and increasing temperatures likely will elevate the risk of reduced water supply in the basin. Although variability in water-year precipitation explains more of the variability in water-year UCRB streamflow than water-year UCRB temperature, since the late 1980s, increases in temperature in the UCRB have caused a substantial reduction in UCRB runoff efficiency (the ratio of streamflow to precipitation). These reductions in flow because of increasing temperatures are the largest documented temperature-related reductions since record keeping began. Increases in UCRB temperature over the past three decades have resulted in a mean UCRB water-year streamflow departure of −1306 million m3 (or −7% of mean water-year streamflow). Additionally, warm-season (April through September) temperature has had a larger effect on variability in water-year UCRB streamflow than the cool-season (October through March) temperature. The greater contribution of warm-season temperature, relative to cool-season temperature, to variability of UCRB flow suggests that evaporation or snowmelt, rather than changes from snow to rain during the cool season, has driven recent reductions in UCRB flow. It is expected that as warming continues, the negative effects of temperature on water-year UCRB streamflow will become more evident and problematic.

Full access
Lulu Song, Qianlai Zhuang, Yunhe Yin, Shaohong Wu, and Xudong Zhu

Abstract

Potential evapotranspiration (PET), the maximum evapotranspiration rate under unlimited water supply, reflects the capacity for transpiration flow and plant primary production. Numerous models have been developed to quantify PET, but there are still large uncertainties in PET estimations. In this study, the authors conducted spatially explicit estimations of daily PET from 1981 to 2010 for eight different land-cover types on the Tibetan Plateau by applying three types of PET models including a combination model (Penman–Monteith), a radiation-based model (Priestley–Taylor), and a temperature-based model (Thornthwaite). This study found that the PET estimated by Thornthwaite model (PETT) was lower than those estimated by Priestley–Taylor (PETPT) and Penman–Monteith models (PETPM). Penman–Monteith model gave the highest estimates of PET on annual and daily scales. The mean annual PET for the whole plateau estimated by these three models varied from 675.1 to 700.5 mm yr−1, and daily PET varied from 1.33 to 1.92 mm day−1. The spatial pattern of PETT did not agree with the PETPT and PETPM, while the latter two agreed well with each other. Because of different model structures and dominant meteorological drivers, the interannual variability of PET varied significantly among the models. PETPT and PETPM showed a transition around 1993 since the dominant meteorological drivers were different before and after 1993. These disagreements among different models suggested that PET models with different algorithms should be used with caution. This study provided a validation to assist those undertaking PET estimations on the Tibetan Plateau.

Full access
Jesse Winchester, Rezaul Mahmood, William Rodgers, Faisal Hossain, Eric Rappin, Joshua Durkee, and Themis Chronis

Abstract

Land-use land-cover change (LULCC) plays an important role in weather and climate systems. Human modifications of land cover include building reservoirs and thus creating artificial lakes for multipurpose use. In this research, the authors have completed a Weather Research and Forecasting (WRF) Model–based assessment of impacts of two large parallel lakes on precipitation. This area is located in the western part of the states of Kentucky and Tennessee and known as the Land between the Lakes (LBL). To determine the impacts, this study has replaced the lakes with grass, deciduous forests, and bare soil and conducted model simulations for three precipitation events of different magnitudes.

The analysis suggests that precipitation increased in some cases and reduced in others. One of the key impacts of LULCC in the LBL area is the relocation of precipitation cells and also the timing of precipitation. Local precipitation amounts increased or decreased with these relocations. In summary, establishment of lakes or replacement of lakes with alternate land cover may modify local precipitation in the LBL area.

Full access
Angel R. Torres-Valcárcel and Cesar Gonzalez-Avilés

Abstract

The selection of statistical methods to evaluate data depends on study questions and characteristics of available data. In climate science, some methods are more popularly used than others; however, the use of applicable alternative methods does not invalidate study findings. Regardless of limitations, some methods like Pearson ordinary correlation are widely used in all sciences including climate and by scientists at government agencies like NOAA and the USGS. In addition, the use of the robust Student’s t test is valid for near-Gaussian distributions with high sample numbers, since it is resistant to data distribution inconsistencies. We wish to put in context the citation about our article and clarify the methods and justification for using them and to educate readers about the use of some conventional statistical tools and tests.

Full access
Soumaya Belmecheri, Flurin Babst, Amy R. Hudson, Julio Betancourt, and Valerie Trouet

Abstract

The latitudinal position of the Northern Hemisphere jet stream (NHJ) modulates the occurrence and frequency of extreme weather events. Precipitation anomalies in particular are associated with NHJ variability; the resulting floods and droughts can have considerable societal and economic impacts. This study develops a new climatology of the 300-hPa NHJ using a bottom-up approach based on seasonally explicit latitudinal NHJ positions. Four seasons with coherent NHJ patterns were identified (January–February, April–May, July–August, and October–November), along with 32 longitudinal sectors where the seasonal NHJ shows strong spatial coherence. These 32 longitudinal sectors were then used as NHJ position indices to examine the influence of seasonal NHJ position on the geographical distribution of NH precipitation and temperature variability and their link to atmospheric circulation pattern. The analyses show that the NHJ indices are related to broad-scale patterns in temperature and precipitation variability, in terrestrial vegetation productivity and spring phenology, and can be used as diagnostic/prognostic tools to link ecosystem and socioeconomic dynamics to upper-level atmospheric patterns.

Full access
Ashley E. Van Beusekom, Grizelle González, and Maria M. Rivera
Full access
Grant L. Harley, James King, and Justin T. Maxwell

Abstract

Atmospheric mineral aerosols include multiple, interrelated processes and feedbacks within the context of land–atmosphere interactions and thus are poorly understood. As the largest dust source in the world, North Africa supplies mineral dust aerosols each year to the Caribbean region and southeastern United States that alter cloud processes, ocean productivity, soil development, and the radiation budget. This study uses a suite of Earth Observation and ground-based analyses to reveal a potential novel effect of atmospheric aerosols on Pinus elliottii var. densa cambial growth during the 2010 CE growing season from the Florida Keys. Over the Florida Keys region, the Earth Observation products captured increased aerosol optical thickness with a clear geographical connection to mineral dust aerosols transported from northern Africa. The MODIS Terra and Aqua products corroborated increased Ozone Monitoring Instrument (OMI) aerosol optical thickness values. Anomalously high Aerosol Robotic Network aerosol optical depth data corresponding with low Ångstrom coefficients confirm the presence of transported mineral dust aerosols during the period circa 4–20 July 2010. The fraction of photosynthetically absorbed radiation over the region during July 2010 experienced an anomalous decrease, concurrent with reduced incoming total and direct solar radiation resulting in a reduced growth response in P. elliottii. The authors pose one of the primary mechanisms responsible for triggering growth anomalies in P. elliottii is the reduction of total photosynthetically active radiation due to a dust-derived increase in aerosol optical depth. As a rare long-lived conifer (300+ years) in a subtropical location, P. elliottii could represent a novel proxy with which to reconstruct annual or seasonal mineral dust aerosol fluxes over the Caribbean region.

Full access
Dev Niyogi, Ming Lei, Chandra Kishtawal, Paul Schmid, and Marshall Shepherd

Abstract

The relationship between rainfall characteristics and urbanization over the eastern United States was examined by analyzing four datasets: daily rainfall in 4593 surface stations over the last 50 years (1958–2008), a high-resolution gridded rainfall product, reanalysis wind data, and a proxy for urban land use (gridded human population data). Results indicate that summer monthly rainfall amounts show an increasing trend in urbanized regions. The frequency of heavy rainfall events has a potential positive bias toward urbanized regions. Most notably, consistent with case studies for individual cities, the climatology of rainfall amounts downwind of urban–rural boundaries shows a significant increasing trend. Analysis of heavy (90th percentile) and extreme (99.5th percentile) rainfall events indicated decreasing trends of heavy rainfall events and a possible increasing trend for extreme rainfall event frequency over urban areas. Results indicate that the urbanization impact was more pronounced in the northeastern and midwestern United States with an increase in rainfall amounts. In contrast, the southeastern United States showed a slight decrease in rainfall amounts and heavy rainfall event frequencies. Results suggest that the urbanization signature is becoming detectable in rainfall climatology as an anthropogenic influence affecting regional precipitation; however, extracting this signature is not straightforward and requires eliminating other dynamical confounding feedbacks.

Full access
Dev Niyogi, Elin M. Jacobs, Xing Liu, Anil Kumar, Larry Biehl, and P. Suresh C. Rao

Abstract

A new, high-resolution (4 km), gridded land surface dataset produced with the Land Information System (LIS) is introduced, and the first set of synthesis of key hydroclimatic variables is reported. The dataset is produced over a 33-yr time period (1980–2012) for the U.S. Midwest with the intent to aid the agricultural community in understanding hydroclimatic impacts on crop production and decision-making in operational practices. While approximately 20 hydroclimatic variables are available through the LIS dataset, the focus here is on soil water content, soil temperature, and evapotranspiration. To assess the performance of the model, the LIS dataset is compared with in situ hydrometeorological observations across the study domain and with coarse-resolution reanalysis products [NARR, MERRA, and NLDAS-2 (phase 2 of the North American Land Data Assimilation System)]. In agricultural regions such as the U.S. Midwest, finescale hydroclimatic mapping that links the regional scale to the field scale is necessary. The new dataset provides this link as an intermediate-scale product that links point observations and coarse gridded datasets. In general, the LIS dataset compares well with in situ observations and coarser gridded products in terms of both temporal and spatial patterns, but cases of strong disagreement exist particularly in areas with sandy soils. The dataset is made available to the broader research community as an effort to fill the gap in spatial hydroclimatic data availability.

Full access
Thomas Stanley, Dalia B. Kirschbaum, George J. Huffman, and Robert F. Adler

Abstract

Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities, such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.

Full access