Browse

You are looking at 61 - 70 of 11,514 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
George J. Huffman
,
Robert F. Adler
,
Ali Behrangi
,
David T. Bolvin
,
Eric J. Nelkin
,
Guojun Gu
, and
Mohammad Reza Ehsani

Abstract

The Global Precipitation Climatology Project (GPCP) Version 3.2 Precipitation Analysis provides globally complete analyses of surface precipitation on a 0.5° × 0.5° latitude–longitude grid at both monthly and daily time scales, covering from 1983 to the present and from June 2000 to the present, respectively. These merged products continue the GPCP heritage of incorporating precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, sounder-based estimates, and surface rain gauge observations emphasizing the strengths of various inputs and striving for time and space homogeneity. Furthermore, these analyses incorporate modern algorithms, refined intercalibrations among sensors, climatologies of recent high-quality satellite precipitation data, and fine-scale multisatellite estimates. New data fields have been introduced to better characterize the precipitation, including the fraction of the precipitation that is liquid (rain) in both the monthly and daily products, and a quality index for the monthly product. Compared to the operational GPCP Version 2.3 Monthly, the Version 3.2 Monthly product provides a more reasonable climatology in the Southern Ocean and increases the estimated global average precipitation by about 4.5%, which is similar to estimates from recent global water budget assessments. Global and regional trends for 1983–2020 with this new Monthly dataset are very similar to those computed from Version 2.3. Compared to the operational One-Degree Daily (Version 1.3) product, the new Version 3.2 Daily is designed to better represent the histogram of precipitation rates, particularly at high values and shifts the start of less-certain high-latitude estimates from 40° to 58° latitude in each hemisphere.

Significance Statement

Studies of Earth’s climate require long-term global datasets based on observations to show how the climate functions and to validate numerical climate models. This study describes an important upgrade to the monthly and daily precipitation (rain and snow) products computed by the Global Precipitation Climatology Project. We use modern analysis schemes, add new sources of data, and deliver results on a finer-scale 0.5° × 0.5° latitude–longitude grid [roughly 55 km (34 mi) on a side at the equator]. The new data show improved agreement with other studies and depict more reasonable behavior in the Southern Ocean. The daily product shows improved estimates of how often different intensities of precipitation occur around the world, particularly the high amounts that drive floods and landslides.

Open access
Hui Li
,
Jadwiga H. Richter
,
Aixue Hu
,
Gerald A. Meehl
, and
Douglas MacMartin

Abstract

The subpolar North Atlantic (SPNA) shows contrasting responses in two sensitivity experiments with increased stratospheric aerosols, offering insight into the physical processes that may impact the Atlantic meridional overturning circulation (AMOC) in a warmer climate. In one, the upper ocean becomes warm and salty, but in the other it becomes cold and fresh. The changes are accompanied by diverging AMOC responses. The first experiment strengthens the AMOC, opposing the weakening trend in the reference simulation. The second experiment shows a much smaller impact. Both simulations use the Community Earth System Model with the Whole Atmosphere Community Climate Model component (CESM-WACCM) but differ in model versions and stratospheric aerosol specifications. Despite both experiments using similar approaches to increase stratospheric aerosols to counteract the rising global temperature, the contrasting SPNA and AMOC responses indicate a considerable dependency on model physics, climate states, and model responses to forcings. This study focuses on examining the physical processes involved with the impact of stratospheric aerosols on the SPNA salinity changes and their potential connections with the AMOC and the Arctic. We find that in both cases, increased stratospheric aerosols act to enhance the SPNA upper-ocean salinity by reducing freshwater export from the Arctic, which is closely tied to the Arctic sea ice changes. The impact on AMOC is primarily through the thermal component of the surface buoyancy fluxes, with negligible contributions from the freshwater component. These experiments shed light on the physical processes that dictate the important connections between the SPNA, the Arctic, the AMOC, and their subsequent feedbacks on the climate system.

Restricted access
Lukas Papritz
,
Sonja Murto
,
Matthias Röthlisberger
,
Rodrigo Caballero
,
Gabriele Messori
,
Gunilla Svensson
, and
Heini Wernli

Abstract

Arctic warm extremes and anomalous sea ice melting have been linked to episodic injections of warm and moist air from midlatitudes, as well as airmass transformations inside the Arctic. However, the relative importance of remote and local processes for such events remains unclear. Here, we focus on events with extreme positive daily-mean surface energy budget (SEB) anomalies over Arctic sea ice in ERA5 data during extended winters (November–March during 1979–2020). Kinematic backward trajectories from the tropospheric column collocated with the SEB anomalies show that near-surface air is of Arctic origin, whereas air farther aloft is transported poleward from the midlatitudes and ascends. Despite the different origin of the air, the entire tropospheric column shows pronounced potential temperature anomalies (on the order of 10 K) building up along air-parcel trajectories over 2–4 days. Quantifying the contributions of horizontal and vertical transport as well as diabatic processes to the generation of these potential temperature anomalies emphasizes the relevance of horizontal advection across the climatological potential temperature gradient for the generation of the anomalies at all levels. Anomalies aloft are further enhanced by latent heating and those near the surface by subsidence, respectively. Surface heat fluxes over subpolar and polar oceans are key for warming and moistening the near-surface air of predominantly Arctic origin and maintaining a positive potential temperature anomaly, which due to its proximity to the surface unfolds the strongest impact on the SEB. This suggests that Arctic airmasses and their local transformations are crucial for generating the most extreme SEB anomalies.

Restricted access
Yongxiao Liang
,
Nathan P. Gillett
, and
Adam H. Monahan

Abstract

Physically based observational constraint methods can effectively reduce uncertainty in global warming projections but have not been widely applied at regional scales. We first develop and apply multivariate linear regression models for constraining projections of surface air temperature averaged over subcontinental regions in the extratropical Northern Hemisphere, based on a set of potential constraints including climatological metrics derived from tropical and subtropical low-level cloud and global average past warming trend, as well as a set of regional climate metrics previously used in the literature. We evaluate the performance of the multivariate linear regression models based on cross-validated tests using output from phases 5 and 6 of the Coupled Model Intercomparison Projects (CMIP). We find that linear regression models using global-scale low-cloud metrics alone perform more robustly than linear regression models using the past global mean warming trend or regional climate metrics as constraints. These results, while favoring global constraints over the set of regional constraints considered, do not preclude the existence of even better regional constraints for particular regions. Through model-based cross-validation, the projections constrained using low-level cloud metrics exhibit more accurate best estimate projections, narrower uncertainty ranges, and more reliable uncertainty estimates in most Northern Hemisphere regions when compared with unconstrained projections. Application of the approach to climate projections based on both Shared Socioeconomic Pathway (SSP) 1-2.6 and SSP5-8.5 using observed low-cloud metrics results in considerably narrower 5%–95% uncertainty ranges of twenty-first-century warming over subcontinental Northern Hemisphere land regions compared to unconstrained projections.

Open access
Jeanne Colin
,
Bertrand Decharme
,
Julien Cattiaux
, and
David Saint-Martin

Abstract

Groundwater and climate interact in a two-way manner. Precipitation ultimately controls groundwater recharge and, conversely, groundwater may influence climate through evapotranspiration. Yet very few global climate models or Earth system models actually simulate groundwater flows. And while the expected impacts of climate change on groundwater resources are the subject of a growing concern, global-scale groundwater–climate feedbacks have received very little attention so far. Here we show that the integration of unconfined aquifers in a global climate model can regionally affect the climate change signal on temperatures and precipitation. We assess the impact of groundwater under preindustrial and 4xCO2 conditions (after climate stabilization). In both cases, we find that groundwater has a cooling and a wetting effect in certain regions of the world. In eastern Europe, both these impacts are stronger in the warmer climate (4xCO2 forcing) where the presence of groundwater reduces the frequency of summer heatwaves by 40%, compared to a 15% reduction in the preindustrial world. This work constitutes one of the very first global assessments of the potential feedbacks of groundwater on climate change. Our results support the idea that groundwater should be represented in global climate models and Earth system models, as it does indeed play an active role in the climate system.

Restricted access
Ning Shi
,
Samuel Ekwacu
,
Shiyi Fu
,
Jian Song
, and
Shaoying Xing

Abstract

The frequent occurrence of extreme cold waves under climate change has attracted widespread attention. Based on the Japanese 55-year Reanalysis daily dataset from 1958 to 2021, we use a newly developed dynamic metric, the local finite-amplitude wave activity (LWA), to explore the precursory signals, outburst conditions, and key dynamic features of extreme cold waves over eastern China from the perspective of synoptic climatology. The statistical results show that approximately 40% of extreme cold waves have the following features. First, the formation of significant positive LWA anomalies over the Balkhash–Baikal region is an evident precursory signal, which is accompanied by significant cold surface air temperature anomalies that accumulate over mid- and high-latitude Eurasia. Second, the appearance of extreme positive LWA anomalies over the region east of Lake Baikal (ELB) is necessary for subsequent outbursts of extreme cold waves. These extreme positive LWA anomalies indicate the meridionally enhanced planetary trough over East Asia and advection of the accumulated cold air masses southeastward to eastern China. Third, the evident positive change in the LWA anomalies over the ELB is mainly attributable to the convergence of the zonal LWA flux due to the zonal wind in the eddy-free state and Stokes drift flux over the eastern area of the ELB and the convergence of the meridional eddy heat flux over the western area. This study demonstrates that the LWA could be used as a simple and feasible metric for monitoring and forecasting extreme cold waves.

Significance Statement

Enhanced waviness in circulation usually occurs before and during the outburst of extreme cold waves over eastern China. With a state-of-the-art diagnostic tool, the local finite-amplitude wave activity (LWA), the present study reveals both precursory signals and outburst conditions of these extreme cold events from the perspective of synoptic climatology. This study not only deepens our understanding of the dynamic process for extreme cold events over eastern China but also offers a method for monitoring and forecasting those extreme events. Our work also provides a method for studying other extreme climate events that are closely related to large-amplitude circulation waviness over the middle and high latitudes.

Restricted access
Frerk Pöppelmeier
,
Fortunat Joos
, and
Thomas F. Stocker

Abstract

Understanding climate variability from millennial to glacial–interglacial time scales remains challenging due to the complex and nonlinear feedbacks between ice, ocean, sediments, biosphere, and atmosphere. Complex climate models generally struggle to dynamically and comprehensively simulate such long time periods as a result of the large computational costs. Here, we therefore coupled a dynamical ice sheet model to the Bern3D Earth system model of intermediate complexity, which allows for simulating multiple glacial–interglacial cycles. The performance of the model is first validated against modern observations and its response to abrupt perturbations, such as atmospheric CO2 changes and North Atlantic freshwater hosing, is investigated. To further test the fully coupled model, the climate evolution over the entire last glacial cycle is explored in a transient simulation forced by variations in the orbital configuration and greenhouse gases and aerosols. The model simulates global mean surface temperature in fair agreement with reconstructions, exhibiting a gradual cooling trend since the last interglacial that is interrupted by two more rapid cooling events during the early Marine Isotope Stage (MIS) 4 and Last Glacial Maximum (LGM). Simulated Northern Hemispheric ice sheets show pronounced variability on orbital time scales, and ice volume more than doubles from MIS3 to the LGM in good agreement with recent sea level reconstructions. At the LGM, the Atlantic overturning has a strength of about 14 Sv (1 Sv ≡ 106 m3 s−1), which is a reduction by about one-quarter compared to the preindustrial. We thus demonstrate that the new coupled model is able to simulate large-scale aspects of glacial–interglacial cycles.

Open access
Michael B. Natoli
and
Eric D. Maloney

Abstract

The mechanisms regulating the relationship between the tropical island diurnal cycle and large-scale modes of tropical variability such as the boreal summer intraseasonal oscillation (BSISO) are explored in observations and an idealized model. Specifically, the local environmental conditions associated with diurnal cycle variability are explored. Using Luzon Island in the northern Philippines as an observational test case, a novel probabilistic framework is applied to improve the understanding of diurnal cycle variability. High-amplitude diurnal cycle days tend to occur with weak to moderate offshore low-level wind and near to above average column moisture in the local environment. The transition from the BSISO suppressed phase to the active phase is most likely to produce the wind and moisture conditions supportive of a substantial diurnal cycle over western Luzon and the South China Sea (SCS). Thus, the impact of the BSISO on the local diurnal cycle can be understood in terms of the change in the probability of favorable environmental conditions. Idealized high-resolution 3D Cloud Model 1 (CM1) simulations driven by base states derived from BSISO composite profiles are able to reproduce several important features of the observed diurnal cycle variability with BSISO phase, including the strong, land-based diurnal cycle and offshore propagation in the transition phases. Background wind appears to be the primary variable controlling the diurnal cycle response, but ambient moisture distinctly reduces precipitation strength in the suppressed BSISO phase and enhances it in the active phase.

Restricted access
Licheng Geng
and
Fei-Fei Jin

Abstract

The basic dynamics of the spatiotemporal diversity for El Niño–Southern Oscillation (ENSO) has been the subject of extensive research and, while several hypotheses have been proposed, remains elusive. One promising line of studies suggests that the observed eastern Pacific (EP) and central Pacific (CP) ENSO may originate from two coexisting leading ENSO modes. We show that the coexistence of unstable EP-like and CP-like modes in these studies arises from contaminated linear stability analysis due to unnoticed numerical scheme caveats. In this two-part study, we further investigate the dynamics of ENSO diversity within a Cane–Zebiak-type model. We first revisit the linear stability issue to demonstrate that only one ENSO-like linear leading mode exists under realistic climate conditions. This single leading ENSO mode can be linked to either a coupled recharge-oscillator (RO) mode favored by the thermocline feedback or a wave-oscillator (WO) mode favored by the zonal advective feedback at the weak air–sea coupling end. Strong competition between the RO and WO modes for their prominence in shaping this ENSO mode into a generalized RO mode makes it sensitive to moderate changes in these two key feedbacks. Modulations of climate conditions yield corresponding modulations in spatial pattern, amplitude, and period associated with this ENSO mode. However, the ENSO behavior undergoing this linear climate condition modulations alone does not seem consistent with the observed ENSO diversity, suggesting the inadequacy of linear dynamics in explaining ENSO diversity. A nonlinear mechanism for ENSO diversity will be proposed and discussed in Part II.

Restricted access
Licheng Geng
and
Fei-Fei Jin

Abstract

In this study, we investigate how a single leading linear El Niño–Southern Oscillation (ENSO) mode, as studied in Part I, leads to the irregular coexistence of central Pacific (CP) and eastern Pacific (EP) ENSO, a phenomenon known as ENSO spatiotemporal diversity. This diversity is fundamentally generated by deterministic nonlinear pathways to chaos via the period-doubling route and, more prevailingly, the subharmonic resonance route with the presence of a seasonally varying basic state. When residing in the weakly nonlinear regime, the coupled system sustains a weak periodic oscillation with a mixed CP/EP pattern as captured by the linear ENSO mode. With a stronger nonlinearity effect, the ENSO behavior experiences a period-doubling bifurcation. The single ENSO orbit splits into coexisting CP-like and EP-like ENSO orbits. A sequence of period-doubling bifurcation results in an aperiodic oscillation featuring irregular CP and EP ENSO occurrences. The overlapping of subharmonic resonances between ENSO and the seasonal cycle allows this ENSO irregularity and diversity to be more readily excited. In the strongly nonlinear regime, the coupled system is dominated by regular EP ENSO. The deterministic ENSO spatiotemporal diversity is thus confined to a relatively narrow range corresponding to a moderately unstable ENSO mode. Stochastic forcing broadens this range and allows ENSO diversity to occur when the ENSO mode is weakly subcritical. A close relationship among a weakened mean zonal temperature gradient, stronger ENSO activity, and more (fewer) occurrences of EP (CP) ENSO is noted, indicating that ENSO–mean state interaction may yield ENSO regime modulations on the multidecadal time scale.

Restricted access