Browse
An international field campaign aiming at atmospheric and oceanic processes associated with the Madden–Julian oscillation (MJO) was conducted in and around the tropical Indian Ocean during October 2011–March 2012. The objective of the field campaign was to collect observations urgently needed to expedite the progress of understanding the key processes of the MJO, focusing on its convective initiation but also including propagation and maturation, and ultimately to improve skills of numerical simulation and prediction of the MJO. Primary targets of the field campaign included interaction of atmospheric deep convection with its environmental moisture, evolution of cloud populations, and air– sea interaction. Several MJO events were captured by ground-based, airborne, and oceanic instruments with advanced observing technology. Numerical simulations and real-time forecasts were integrated components of the field campaign in its design and operation. Observations collected during the campaign provide unprecedented opportunities to reveal detailed processes of the MJO and to assist evaluation, improvement, and development of weather and climate models. The data policy of the campaign encourages the broad research community to use the field observations to advance the MJO study.
An international field campaign aiming at atmospheric and oceanic processes associated with the Madden–Julian oscillation (MJO) was conducted in and around the tropical Indian Ocean during October 2011–March 2012. The objective of the field campaign was to collect observations urgently needed to expedite the progress of understanding the key processes of the MJO, focusing on its convective initiation but also including propagation and maturation, and ultimately to improve skills of numerical simulation and prediction of the MJO. Primary targets of the field campaign included interaction of atmospheric deep convection with its environmental moisture, evolution of cloud populations, and air– sea interaction. Several MJO events were captured by ground-based, airborne, and oceanic instruments with advanced observing technology. Numerical simulations and real-time forecasts were integrated components of the field campaign in its design and operation. Observations collected during the campaign provide unprecedented opportunities to reveal detailed processes of the MJO and to assist evaluation, improvement, and development of weather and climate models. The data policy of the campaign encourages the broad research community to use the field observations to advance the MJO study.