Browse

You are looking at 61 - 70 of 8,048 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Arjun Jagannathan, Kaushik Srinivasan, James C. McWilliams, M. Jeroen Molemaker, and Andrew L. Stewart

Abstract

Current–topography interactions in the ocean give rise to eddies spanning a wide range of spatial and temporal scales. The latest modeling efforts indicate that coastal and underwater topography are important generation sites for submesoscale coherent vortices (SCVs), characterized by horizontal scales of O(0.110)km. Using idealized, submesoscale and bottom boundary layer (BBL)-resolving simulations and adopting an integrated vorticity balance formulation, we quantify precisely the role of BBLs in the vorticity generation process. In particular, we show that vorticity generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the bottom. We refer to this as the bottom stress divergence torque (BSDT). BSDT is a fundamentally nonconservative torque that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar bottom stress curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an interpretation of BPT as the sum of a viscous, vorticity-generating component (BSDT) and an inviscid, “flow-turning” component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially less energetic, and have smaller spatial scales.

Open access
Bieito Fernández-Castro, Dafydd Gwyn Evans, Eleanor Frajka-Williams, Clément Vic, and Alberto C. Naveira-Garabato
Open access
Justin M. Brown and Timour Radko

Abstract

Arctic staircases mediate the heat transport from the warm water of Atlantic origin to the cooler waters of the Arctic mixed layer. For this reason, staircases have received much due attention from the community, and their heat transport has been well characterized for systems in the absence of external forcing. However, the ocean is a dynamic environment with large-scale currents and internal waves being omnipresent, even in regions shielded by sea ice. Thus, we have attempted to address the effects of background shear on fully developed staircases using numerical simulations. The code, which is pseudospectral, solves the governing equations for a Boussinesq fluid with temperature and salinity in a shearing coordinate system. We find that—unlike many other double-diffusive systems—the sheared staircase requires three-dimensional simulations to properly capture the dynamics. Our simulations predict shear patterns that are consistent with observations and show that staircases in the presence of external shear should be expected to transport heat and salt at least twice as efficiently as in the corresponding nonsheared systems. These findings may lead to critical improvements in the representation of microscale mixing in global climate models.

Restricted access
YUE BAI, YAN WANG, and ANDREW L. STEWART

Abstract

Topographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts.

Restricted access
Bertrand L. Delorme, Leif N. Thomas, Patrick Marchesiello, Jonathan Gula, Guillaume Roullet, and M. Jeroen Molemaker

Abstract

Recent theoretical work has shown that, when the so-called nontraditional effects are taken into account, the reflection of equatorially trapped waves (ETWs) off the seafloor generates strong vertical shear that results in bottom-intensified mixing at the inertial latitude of the ETW via a mechanism of critical reflection. It has been estimated that this process could play an important role in driving diapycnal upwelling in the abyssal meridional overturning circulation (AMOC). However, these results were derived under an idealized configuration with a monochromatic ETW propagating through a flat ocean at rest. To test the theory in a flow that is more representative of the ocean, we contrast a set of realistic numerical simulations of the eastern equatorial Pacific run using either the hydrostatic or quasi-hydrostatic approximation, the latter of which accounts for nontraditional effects. The simulations are nested into a Pacific-wide hydrostatic parent solution forced with climatological data and realistic bathymetry, resulting in an ETW field and a deep circulation consistent with observations. Using these simulations, we observe enhanced abyssal mixing in the quasi-hydrostatic run, even over smooth topography, that is absent in the hydrostatic run. The mixing is associated with inertial shear that has spatiotemporal properties consistent with the critical reflection mechanism. The enhanced mixing results in a weakening of the abyssal stratification and drives diapycnal upwelling in our simulation, in agreement with the predictions from the idealized simulations. The diapycnal upwelling is O(10) Sv (1 Sv ≡ 106 m3 s−1) and thus could play an important role in closing the AMOC.

Restricted access
Kaushik Srinivasan, James C. McWilliams, and Arjun Jagannathan

Abstract

Submesoscale coherent vortices (SCVs) are a ubiquitous feature of topographic wakes in the extratropical oceans. Recent studies demonstrate a mechanism wherein high-vorticity bottom boundary layers (BBLs) on the slopes of the topography separate (forming shear layers), undergo instabilities, and subsequently merge in the horizontal and align in the vertical to form vertically coherent, columnar SCVs (i.e., with low vertical shear). Background rotation is critical to the vertical alignment of unstable vortical filaments into coherent SCVs. In the tropics, however, the weakening of rotation prevents this alignment. Employing an idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification N and rotation rate f, we examine the wake structure for a range of f values spanning values from the poles to the tropics. We find a systematic increase in the interior vertical shear with decreasing f that manifests as a highly layered wake structure consisting of vertically thin, “pancake” SCVs possessing a high vertical shear. A monotonic increase in the wake energy dissipation rate is concomitantly observed with decreasing f. By examining the evolution equations for the vertical shear and vertical enstrophy, we find that the interior shear generation is an advective process, with the location of peak shear generation approximately collocated with maximum energy dissipation. This leads to the inference that high-wake dissipation in tropical topographic wakes is caused by parameterized shear instabilities induced by interior advective generation of vertical shear in the near wake region.

Open access
Lianxin Zhang, Xuefeng Zhang, William Perrie, Changlong Guan, Bo Dan, Chunjian Sun, Xinrong Wu, Kexiu Liu, and Dong Li

Abstract

A coupled ocean–wave–sea spray model system is used to investigate the impacts of sea spray and sea surface roughness on the response of the upper ocean to the passage of the Super Typhoon Haitang. Sea spray–mediated heat and momentum fluxes are derived from an improved version of Fairall’s heat fluxes formulation and Andreas’s sea spray–mediated momentum flux models. For winds ranging from low to extremely high speeds, a new parameterization scheme for the sea surface roughness is developed, in which the effects of wave state and sea spray are introduced. In this formulation, the drag coefficient has minimal values over the right quadrant of the typhoon track, along which the typhoon-generated waves are longer, smoother, and older, compared to other quadrants. Using traditional interfacial air–sea turbulent (sensible, latent, and momentum) fluxes, the sea surface cooling response to Typhoon Haitang is overestimated by 1°C, which can be compensated by the effects of sea spray and ocean waves on the right side of the storm. Inclusion of sea spray–mediated turbulent fluxes and sea surface roughness, modulated by ocean waves, gives enhanced cooling along the left edges of the cooling area by 0.2°C, consistent with the upper ocean temperature observations.

Open access
Edward J. Walsh, C. W. Fairall, and Ivan PopStefanija

Abstract

The airborne NOAA Wide Swath Radar Altimeter (WSRA) is a 16-GHz digital beamforming radar altimeter that produces a topographic map of the waves as the aircraft advances. The wave topography is transformed by a two-dimensional FFT into directional wave spectra. The WSRA operates unattended on the aircraft and provides continuous real-time reporting of several data products: 1) significant wave height; 2) directional ocean wave spectra; 3) the wave height, wavelength, and direction of propagation of the primary and secondary wave fields; 4) rainfall rate; and 5) sea surface mean square slope (mss). During hurricane flights the data products are transmitted in real-time from the NOAA WP-3D aircraft through a satellite data link to a ground station and on to the National Hurricane Center (NHC) for use by the forecasters for intensity projections and incorporation in hurricane wave models. The WSRA is the only instrument that can quickly provide high-density measurements of the complex wave topography over a large area surrounding the eye of the storm.

Open access
Hossein A. Kafiabad, Jacques Vanneste, and William R. Young

Abstract

Anticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initial wave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures, and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both linear and nonlinear predictions agree convincingly with the Boussinesq results.

Open access
J. Thomas Farrar, Theodore Durland, Steven R. Jayne, and James F. Price

Abstract

Measurements from satellite altimetry are used to show that sea surface height (SSH) variability throughout much of the North Pacific Ocean is coherent with the SSH signal of the tropical instability waves (TIWs) that result from instabilities of the equatorial currents. This variability has regular phase patterns consistent with freely propagating barotropic Rossby waves radiating energy away from the unstable equatorial currents, and the waves clearly propagate from the equatorial region to at least 30°N. The pattern of SSH variance at TIW frequencies exhibits remarkable patchiness on scales of hundreds of kilometers, which we interpret as being due to the combined effects of wave reflection, refraction, and interference. North of 40°N, more than 6000 km from the unstable equatorial currents, the SSH field remains coherent with the near-equatorial SSH variability, but it is not as clear whether the variability at the higher latitudes is a simple result of barotropic wave radiation from the tropical instability waves. Even more distant regions, as far north as the Aleutian Islands off of Alaska and the Kamchatka Peninsula of eastern Russia, have SSH variability that is significantly coherent with the near-equatorial instabilities. The variability is not well represented in the widely used gridded SSH data product commonly referred to as the AVISO or DUACS product, and this appears to be a result of spatial variations in the filtering properties of the objective mapping scheme.

Open access