Browse
Abstract
Although decision-making in response to tornado warnings is well researched, most studies do not examine whether individual responses to these warnings vary across different geographical locations and demographic groups. This gap is addressed by using data from a decision experiment that places participants virtually in a simulated tornado warning and asks them to minimize the costs of their decisions. The authors examine the following: 1) what demographic attributes may contribute to choices to minimize costs to protect assets at a specific location in a tornado warning, 2) whether there is a spatial component to how these attributes influence decision-making, and 3) if there are specific U.S. regions where individuals do not make protective decisions that minimize their overall cost. Multilevel regression analysis and poststratification are applied to data from the simulated decision experiment to estimate which demographic attributes and National Weather Service County Warning Areas are most associated with the costliest protective decisions. The results are then analyzed using spatial autocorrelation to identify spatial patterns. Results indicate that sex, race, and ethnicity are important factors that influence protection decisions. Findings also show that people across the southern portions of the United States tend to make more costly protective decisions, as defined in this work.
Significance Statement
Tornadoes, although rare, threaten both life and property. Studies have shown that certain demographic groups are more negatively impacted by disasters than others and are at higher risk of severe weather hazards. We ask if there are demographic characteristics or geographic locations in common among people who are more prone to making protection decisions during tornado warnings to minimize economic costs. Results can help warning providers, such as the National Weather Service, direct resources and education to specific types of decision-makers or locations to improve sheltering decisions.
Abstract
Although decision-making in response to tornado warnings is well researched, most studies do not examine whether individual responses to these warnings vary across different geographical locations and demographic groups. This gap is addressed by using data from a decision experiment that places participants virtually in a simulated tornado warning and asks them to minimize the costs of their decisions. The authors examine the following: 1) what demographic attributes may contribute to choices to minimize costs to protect assets at a specific location in a tornado warning, 2) whether there is a spatial component to how these attributes influence decision-making, and 3) if there are specific U.S. regions where individuals do not make protective decisions that minimize their overall cost. Multilevel regression analysis and poststratification are applied to data from the simulated decision experiment to estimate which demographic attributes and National Weather Service County Warning Areas are most associated with the costliest protective decisions. The results are then analyzed using spatial autocorrelation to identify spatial patterns. Results indicate that sex, race, and ethnicity are important factors that influence protection decisions. Findings also show that people across the southern portions of the United States tend to make more costly protective decisions, as defined in this work.
Significance Statement
Tornadoes, although rare, threaten both life and property. Studies have shown that certain demographic groups are more negatively impacted by disasters than others and are at higher risk of severe weather hazards. We ask if there are demographic characteristics or geographic locations in common among people who are more prone to making protection decisions during tornado warnings to minimize economic costs. Results can help warning providers, such as the National Weather Service, direct resources and education to specific types of decision-makers or locations to improve sheltering decisions.
Abstract
Multiday severe weather outlooks can inform planning beyond the hour-to-day windows of warnings and watches. Outlooks can be complex to visualize, as they represent large-scale weather phenomena overlapping across several days at varying levels of uncertainty. Here, we present the results of a survey (n = 417) that explores how visual variables affect comprehension, inferences, and intended decision-making in a hypothetical scenario with the New Zealand MetService Severe Weather Outlook. We propose that visualization of the time window, forecast area, icons, and uncertainty can influence perceptions and decision-making based on four key findings. First, composite-style outlooks that depict multiple days of weather on one map can lead to biased perceptions of the forecast. When responding to questions about a day for which participants accurately reported there was no severe weather forecast, those who viewed a composite outlook reported higher likelihoods of severe weather occurring, higher levels of concern about travel, and higher likelihoods of changing plans compared to those who viewed outlooks that showed weather for each day on a separate map, suggesting that they perceived the forecast to underrepresent the likelihood of severe weather on that day. Second, presenting uncertainty in an extrinsic way (e.g., “low”) can lead to more accurate estimates of likelihood than intrinsic formats (e.g., hue variation). Third, shaded forecast areas may lead to higher levels of confidence in the forecast than outlined forecast areas. Fourth, inclusion of weather icons can improve comprehension in some conditions. The results demonstrate how visualization can affect decision-making about severe weather and support several evidence-based considerations for effective design of long-term forecasts.
Significance Statement
Severe weather outlook forecasts can be hard to clearly communicate because they show multiple weather patterns across multiple days and regions with varying uncertainty. The purpose of this study is to explore how visual elements of outlook design affect the way that people understand this complex content. We had three separate groups respond to the same series of questions while viewing different modified versions of the MetService Severe Weather Outlook in Aotearoa New Zealand and compared their responses. We find that the way the outlooks’ time window, forecast area, icons, and uncertainty are visualized can influence how people understand outlooks and make inferences and decisions about severe weather. We discuss how these influences may impact communication and action and present several evidence-based considerations for effective outlook design.
Abstract
Multiday severe weather outlooks can inform planning beyond the hour-to-day windows of warnings and watches. Outlooks can be complex to visualize, as they represent large-scale weather phenomena overlapping across several days at varying levels of uncertainty. Here, we present the results of a survey (n = 417) that explores how visual variables affect comprehension, inferences, and intended decision-making in a hypothetical scenario with the New Zealand MetService Severe Weather Outlook. We propose that visualization of the time window, forecast area, icons, and uncertainty can influence perceptions and decision-making based on four key findings. First, composite-style outlooks that depict multiple days of weather on one map can lead to biased perceptions of the forecast. When responding to questions about a day for which participants accurately reported there was no severe weather forecast, those who viewed a composite outlook reported higher likelihoods of severe weather occurring, higher levels of concern about travel, and higher likelihoods of changing plans compared to those who viewed outlooks that showed weather for each day on a separate map, suggesting that they perceived the forecast to underrepresent the likelihood of severe weather on that day. Second, presenting uncertainty in an extrinsic way (e.g., “low”) can lead to more accurate estimates of likelihood than intrinsic formats (e.g., hue variation). Third, shaded forecast areas may lead to higher levels of confidence in the forecast than outlined forecast areas. Fourth, inclusion of weather icons can improve comprehension in some conditions. The results demonstrate how visualization can affect decision-making about severe weather and support several evidence-based considerations for effective design of long-term forecasts.
Significance Statement
Severe weather outlook forecasts can be hard to clearly communicate because they show multiple weather patterns across multiple days and regions with varying uncertainty. The purpose of this study is to explore how visual elements of outlook design affect the way that people understand this complex content. We had three separate groups respond to the same series of questions while viewing different modified versions of the MetService Severe Weather Outlook in Aotearoa New Zealand and compared their responses. We find that the way the outlooks’ time window, forecast area, icons, and uncertainty are visualized can influence how people understand outlooks and make inferences and decisions about severe weather. We discuss how these influences may impact communication and action and present several evidence-based considerations for effective outlook design.
Abstract
The motivations of this research are the continuation and intensification of drought effects on various socioeconomic sectors and the observation of few studies and no coordinated efforts to provide a compatible framework for drought risk management in different economic sectors and population groups of the study region. Present research was carried out to assess the vulnerability and population exposed to drought in Khorasan Razavi Province. Meteorological datasets for the years 1950–2020; drought indices including self-calibrating Palmer (scPDSI), standardized precipitation (SPI), and standardized precipitation evapotranspiration (SPEI); population and livestock density indicators; agricultural lands; water stress; and socioeconomic and infrastructural factors have been used. Results indicate that dry and wet periods were estimated to be more intense by SPEI in all studied stations; also, a significant difference was observed between the results of the SPI and SPEI indices in determining the long dry and wet periods. The highest variation between the occurrence of dry and wet periods was estimated using SPEI, which could be related to seasonal fluctuations of temperature and computational evapotranspiration. Although no significant correlation was observed between used indices to identify the number of wet months, a significant positive correlation exists between the numbers of dry months estimated by those. Drought risk analysis demonstrated that the central and southern parts of the province are exposed to very severe drought while the northern and northeastern parts of the area are more inclined to severe drought. The highest class of drought exposure is observed in the southern, central, and eastern regions of the province, so they represent the high-risk category of drought.
Abstract
The motivations of this research are the continuation and intensification of drought effects on various socioeconomic sectors and the observation of few studies and no coordinated efforts to provide a compatible framework for drought risk management in different economic sectors and population groups of the study region. Present research was carried out to assess the vulnerability and population exposed to drought in Khorasan Razavi Province. Meteorological datasets for the years 1950–2020; drought indices including self-calibrating Palmer (scPDSI), standardized precipitation (SPI), and standardized precipitation evapotranspiration (SPEI); population and livestock density indicators; agricultural lands; water stress; and socioeconomic and infrastructural factors have been used. Results indicate that dry and wet periods were estimated to be more intense by SPEI in all studied stations; also, a significant difference was observed between the results of the SPI and SPEI indices in determining the long dry and wet periods. The highest variation between the occurrence of dry and wet periods was estimated using SPEI, which could be related to seasonal fluctuations of temperature and computational evapotranspiration. Although no significant correlation was observed between used indices to identify the number of wet months, a significant positive correlation exists between the numbers of dry months estimated by those. Drought risk analysis demonstrated that the central and southern parts of the province are exposed to very severe drought while the northern and northeastern parts of the area are more inclined to severe drought. The highest class of drought exposure is observed in the southern, central, and eastern regions of the province, so they represent the high-risk category of drought.
Abstract
Simultaneous and overlapping tornadoes and flash floods are a meteorological hazard with complex societal implications as, when issued at the same time, tornado and flash flood warnings provide conflicting public safety advice. This work assessed potential tornado and flash flood (TORFF) events in a portion of the Southeast from an interdisciplinary perspective with a focus on the climatology, vulnerability, and public perceptions surrounding these hazards. Our results suggest that, in addition to the conflicting warning advice, TORFFs present a challenge to the public because they can occur at night or in cool seasons when they are least expected, though they are most common in spring. Also, the storms causing TORFFs are often not clearly organized, causing a forecast and communication challenge. The public responding to the tornado and flash flood warnings in our study area is more vulnerable to TORFFs than those in other areas and may lack vehicles and structures to respond safely to one or both hazard threats. Administered survey results suggest that many believe they know what protective actions to take in a TORFF, though they may not believe they are likely in their area. Those that believe they are likely are also more likely to feel prepared to respond. Many climatology and vulnerability characteristics vary between, and at times within, NWS county warning areas, highlighting the different communication and preparation needs across the region. Approximately a quarter of flash flood and tornado warnings overlap in the region for an average of 31 min. The frequency of TORFFs and their associated public safety challenges warrant continued investigation.
Significance Statement
The purpose of this work is to increase our understanding of overlapping tornado and flash flood events by studying them from a multidisciplinary perspective. We found that residents in the southeastern United States are especially vulnerable to overlapping tornado and flash floods. This vulnerability is heightened by the climatology of overlapping tornado and flash floods because they can occur when they are unexpected, for example, at night or in the winter, and the public perceptions of overlapping tornado and flash floods, which is that they may not be likely in their area. These findings are important because much of the Southeast includes a population vulnerable to overlapping tornado and flash floods who may be underestimating their risk, and therefore may be unprepared for an event that requires critical decision-making.
Abstract
Simultaneous and overlapping tornadoes and flash floods are a meteorological hazard with complex societal implications as, when issued at the same time, tornado and flash flood warnings provide conflicting public safety advice. This work assessed potential tornado and flash flood (TORFF) events in a portion of the Southeast from an interdisciplinary perspective with a focus on the climatology, vulnerability, and public perceptions surrounding these hazards. Our results suggest that, in addition to the conflicting warning advice, TORFFs present a challenge to the public because they can occur at night or in cool seasons when they are least expected, though they are most common in spring. Also, the storms causing TORFFs are often not clearly organized, causing a forecast and communication challenge. The public responding to the tornado and flash flood warnings in our study area is more vulnerable to TORFFs than those in other areas and may lack vehicles and structures to respond safely to one or both hazard threats. Administered survey results suggest that many believe they know what protective actions to take in a TORFF, though they may not believe they are likely in their area. Those that believe they are likely are also more likely to feel prepared to respond. Many climatology and vulnerability characteristics vary between, and at times within, NWS county warning areas, highlighting the different communication and preparation needs across the region. Approximately a quarter of flash flood and tornado warnings overlap in the region for an average of 31 min. The frequency of TORFFs and their associated public safety challenges warrant continued investigation.
Significance Statement
The purpose of this work is to increase our understanding of overlapping tornado and flash flood events by studying them from a multidisciplinary perspective. We found that residents in the southeastern United States are especially vulnerable to overlapping tornado and flash floods. This vulnerability is heightened by the climatology of overlapping tornado and flash floods because they can occur when they are unexpected, for example, at night or in the winter, and the public perceptions of overlapping tornado and flash floods, which is that they may not be likely in their area. These findings are important because much of the Southeast includes a population vulnerable to overlapping tornado and flash floods who may be underestimating their risk, and therefore may be unprepared for an event that requires critical decision-making.
Abstract
Heat communication interventions are an essential way that public safety organizations can reduce extreme heat consequences for at-risk groups. Although the aim of these interventions is typically behavior change, these organizations commonly assume that providing information about heat risks, impacts, vulnerable populations, and protective actions will lead individuals to protect themselves. However, behavior change is a complex process whereby messages must be crafted in ways that increase their persuasive effects. To examine the extent to which key assumptions about behavior change are present in public safety organizations’ heat communication interventions, we examine 250 heat-related tweets sent by seven National Weather Service (NWS) weather forecast offices (WFOs) in 2021. We find that these NWS WFOs use technical language or “jargon” to communicate about heat risks and impacts. In addition, we find that information about vulnerable populations and protective actions is not presented in a way that conforms to theory on behavior change. Based on these results, we offer recommendations to increase the persuasiveness of NWS WFO communication interventions that encourage the public to protect themselves during extreme heat events.
Significance Statement
Heat is the leading cause of death among all weather-related hazards. How heat is communicated to the public can help mitigate heat-related morbidity and mortality. However, heat communication interventions are often developed with several embedded assumptions about behavior change that negatively impact their effectiveness. By examining how a key public safety organization communicates about heat on social media, and the extent to which these assumptions are present, we offer recommendations to increase the persuasiveness of NWS heat communication on social media.
Abstract
Heat communication interventions are an essential way that public safety organizations can reduce extreme heat consequences for at-risk groups. Although the aim of these interventions is typically behavior change, these organizations commonly assume that providing information about heat risks, impacts, vulnerable populations, and protective actions will lead individuals to protect themselves. However, behavior change is a complex process whereby messages must be crafted in ways that increase their persuasive effects. To examine the extent to which key assumptions about behavior change are present in public safety organizations’ heat communication interventions, we examine 250 heat-related tweets sent by seven National Weather Service (NWS) weather forecast offices (WFOs) in 2021. We find that these NWS WFOs use technical language or “jargon” to communicate about heat risks and impacts. In addition, we find that information about vulnerable populations and protective actions is not presented in a way that conforms to theory on behavior change. Based on these results, we offer recommendations to increase the persuasiveness of NWS WFO communication interventions that encourage the public to protect themselves during extreme heat events.
Significance Statement
Heat is the leading cause of death among all weather-related hazards. How heat is communicated to the public can help mitigate heat-related morbidity and mortality. However, heat communication interventions are often developed with several embedded assumptions about behavior change that negatively impact their effectiveness. By examining how a key public safety organization communicates about heat on social media, and the extent to which these assumptions are present, we offer recommendations to increase the persuasiveness of NWS heat communication on social media.
Abstract
Because flash drought is a relatively new phenomenon in drought research, defining the concept is critical for scientists and decision-makers. Having detrimental impacts on many sectors, it is important to have a consistent definition and understanding of flash drought, between experts and stakeholders, to provide early warning to the community. This study focuses on onset and progression of conditions and demonstrates the difference in flash drought identification for 15 events across six quantitative definitions of flash drought that use the U.S. Drought Monitor (USDM). Five flash drought events have been studied in the literature while 10 additional events have been perceived as flash drought by stakeholders. The results show that two of six definitions consistently capture the earliest onset of flash drought and include a large percent area in the identification. A qualitative analysis of management challenges and needs determined by stakeholders was completed using survey data. The results found that managing impacts and better communication and education were the top challenges and more data and enhanced and efficient communication as the top needs to better monitor, manage, and respond to flash droughts. The results demonstrate the need for assessing the characteristics of the definitions to enhance communication and monitoring strategies for large and small-scale flash droughts.
Significance Statement
The purpose of this study is to better understand how different numerical flash drought definitions characterize multiple flash drought events and how these definitions are useful in addressing the needs and challenges of stakeholders. This is important because definitions may capture different areas in flash droughts, which can impact how end users identify a flash drought. Further, this study uses events identified by the literature and by people familiar with drought monitoring. From these findings, definitions that capture flash drought earliest would help address the challenge of rapid onset and the need of quicker data. Further, definitions by sector would be beneficial to address the scale of impacts. This study identifies the importance of definitions for early warning systems.
Abstract
Because flash drought is a relatively new phenomenon in drought research, defining the concept is critical for scientists and decision-makers. Having detrimental impacts on many sectors, it is important to have a consistent definition and understanding of flash drought, between experts and stakeholders, to provide early warning to the community. This study focuses on onset and progression of conditions and demonstrates the difference in flash drought identification for 15 events across six quantitative definitions of flash drought that use the U.S. Drought Monitor (USDM). Five flash drought events have been studied in the literature while 10 additional events have been perceived as flash drought by stakeholders. The results show that two of six definitions consistently capture the earliest onset of flash drought and include a large percent area in the identification. A qualitative analysis of management challenges and needs determined by stakeholders was completed using survey data. The results found that managing impacts and better communication and education were the top challenges and more data and enhanced and efficient communication as the top needs to better monitor, manage, and respond to flash droughts. The results demonstrate the need for assessing the characteristics of the definitions to enhance communication and monitoring strategies for large and small-scale flash droughts.
Significance Statement
The purpose of this study is to better understand how different numerical flash drought definitions characterize multiple flash drought events and how these definitions are useful in addressing the needs and challenges of stakeholders. This is important because definitions may capture different areas in flash droughts, which can impact how end users identify a flash drought. Further, this study uses events identified by the literature and by people familiar with drought monitoring. From these findings, definitions that capture flash drought earliest would help address the challenge of rapid onset and the need of quicker data. Further, definitions by sector would be beneficial to address the scale of impacts. This study identifies the importance of definitions for early warning systems.
Abstract
Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h−1. Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning.
Significance Statement
In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.
Abstract
Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h−1. Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning.
Significance Statement
In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.
Abstract
Broadcast meteorologists are essential in the communication of National Weather Service (NWS) warnings to the public. Therefore, it is imperative to include them in a user-centered approach for the design and implementation of new warning products. Forecasting a Continuum of Environmental Threats (FACETs) will modernize the way meteorologists forecast and communicate NWS warning information to the general public using rapidly updating probabilistic hazard information (PHI). Storm-scale PHI consists of probabilistic forecasts for severe wind/hail, tornadoes, and lightning hazards. Hence, NWS warnings would have the capacity to be supplemented by a quantitative or qualitative likelihood of hazard occurrence. The researchers conducting this study wanted to know what broadcast meteorologists thought about the inclusion of this likelihood information and how it could impact their decision-making and communication process. Using a nationwide survey, this team of researchers first asked broadcast meteorologists about their current practices for severe weather coverage using NWS watches and warnings. Next, broadcast meteorologists were introduced to multiple iterations of PHI prototypes and queried for their input. Findings indicated that broadcast meteorologists already face a complex decision-making and communication process under today’s warning paradigm. In addition, respondents were split on whether to explicitly communicate probabilities with their viewers. Respondents’ choices were also somewhat inconclusive regarding nomenclature, definitions of PHI and representations of PHI with warning polygons. These results suggest that PHI should feature user-driven, customizable options to fulfill broadcast meteorologists’ needs and that the iterative nature of the research-and-development process of PHI should continue.
Significance Statement
Broadcast meteorologists are vital communicators of dangerous weather to the public, leading researchers to study them more closely. Using a nationwide survey, this team of researchers wanted to know how broadcast meteorologists talk about tornadoes, large hail, and high winds to their viewers under today’s system of National Weather Service warnings. Survey findings indicated that broadcast meteorologists face a complex decision-making process when communicating dangerous weather. Any effort to modernize the current warning system, such as including hazard probability, should consider this complex process. Modernization should complement the role of broadcast meteorologists to ultimately serve the public and user-driven options should be a key component of any probabilistic information that is included in a future National Weather Service warning system.
Abstract
Broadcast meteorologists are essential in the communication of National Weather Service (NWS) warnings to the public. Therefore, it is imperative to include them in a user-centered approach for the design and implementation of new warning products. Forecasting a Continuum of Environmental Threats (FACETs) will modernize the way meteorologists forecast and communicate NWS warning information to the general public using rapidly updating probabilistic hazard information (PHI). Storm-scale PHI consists of probabilistic forecasts for severe wind/hail, tornadoes, and lightning hazards. Hence, NWS warnings would have the capacity to be supplemented by a quantitative or qualitative likelihood of hazard occurrence. The researchers conducting this study wanted to know what broadcast meteorologists thought about the inclusion of this likelihood information and how it could impact their decision-making and communication process. Using a nationwide survey, this team of researchers first asked broadcast meteorologists about their current practices for severe weather coverage using NWS watches and warnings. Next, broadcast meteorologists were introduced to multiple iterations of PHI prototypes and queried for their input. Findings indicated that broadcast meteorologists already face a complex decision-making and communication process under today’s warning paradigm. In addition, respondents were split on whether to explicitly communicate probabilities with their viewers. Respondents’ choices were also somewhat inconclusive regarding nomenclature, definitions of PHI and representations of PHI with warning polygons. These results suggest that PHI should feature user-driven, customizable options to fulfill broadcast meteorologists’ needs and that the iterative nature of the research-and-development process of PHI should continue.
Significance Statement
Broadcast meteorologists are vital communicators of dangerous weather to the public, leading researchers to study them more closely. Using a nationwide survey, this team of researchers wanted to know how broadcast meteorologists talk about tornadoes, large hail, and high winds to their viewers under today’s system of National Weather Service warnings. Survey findings indicated that broadcast meteorologists face a complex decision-making process when communicating dangerous weather. Any effort to modernize the current warning system, such as including hazard probability, should consider this complex process. Modernization should complement the role of broadcast meteorologists to ultimately serve the public and user-driven options should be a key component of any probabilistic information that is included in a future National Weather Service warning system.
Abstract
Although scientists agree that climate change is anthropogenic, differing interpretations of evidence in a highly polarized sociopolitical environment impact how individuals perceive climate change. While prior work suggests that individuals experience climate change through local conditions, there is a lack of consensus on how personal experience with extreme precipitation may alter public opinion on climate change. We combine high-resolution precipitation data at the zip-code level with nationally representative public opinion survey results (n = 4008) that examine beliefs in climate change and the perceived cause. Our findings support relationships between well-established value systems (i.e., partisanship, religion) and socioeconomic status with individual opinions of climate change, showing that these values are influential in opinion formation on climate issues. We also show that experiencing characteristics of atypical precipitation (e.g., more variability than normal, increasing or decreasing trends, or highly recurring extreme events) in a local area are associated with increased belief in anthropogenic climate change. This suggests that individuals in communities that experience greater atypical precipitation may be more accepting of messaging and policy strategies directly aimed at addressing climate change challenges. Thus, communication strategies that leverage individual perception of atypical precipitation at the local level may help tap into certain “experiential” processing methods, making climate change feel less distant. These strategies may help reduce polarization and motivate mitigation and adaptation actions.
Significance Statement
Public acceptance for anthropogenic climate change is hindered by how related issues are presented, diverse value systems, and information-processing biases. Personal experiences with extreme weather may act as a salient cue that impacts individuals’ perceptions of climate change. We couple a large, nationally representative public opinion dataset with station precipitation data at the zip-code level in the United States. Results are nuanced but suggest that anomalous and variable precipitation in a local area may be interpreted as evidence for anthropogenic climate change. So, relating atypical local precipitation conditions to climate change may help tap into individuals’ experiential processing, sidestep polarization, and tailor communications at the local level.
Abstract
Although scientists agree that climate change is anthropogenic, differing interpretations of evidence in a highly polarized sociopolitical environment impact how individuals perceive climate change. While prior work suggests that individuals experience climate change through local conditions, there is a lack of consensus on how personal experience with extreme precipitation may alter public opinion on climate change. We combine high-resolution precipitation data at the zip-code level with nationally representative public opinion survey results (n = 4008) that examine beliefs in climate change and the perceived cause. Our findings support relationships between well-established value systems (i.e., partisanship, religion) and socioeconomic status with individual opinions of climate change, showing that these values are influential in opinion formation on climate issues. We also show that experiencing characteristics of atypical precipitation (e.g., more variability than normal, increasing or decreasing trends, or highly recurring extreme events) in a local area are associated with increased belief in anthropogenic climate change. This suggests that individuals in communities that experience greater atypical precipitation may be more accepting of messaging and policy strategies directly aimed at addressing climate change challenges. Thus, communication strategies that leverage individual perception of atypical precipitation at the local level may help tap into certain “experiential” processing methods, making climate change feel less distant. These strategies may help reduce polarization and motivate mitigation and adaptation actions.
Significance Statement
Public acceptance for anthropogenic climate change is hindered by how related issues are presented, diverse value systems, and information-processing biases. Personal experiences with extreme weather may act as a salient cue that impacts individuals’ perceptions of climate change. We couple a large, nationally representative public opinion dataset with station precipitation data at the zip-code level in the United States. Results are nuanced but suggest that anomalous and variable precipitation in a local area may be interpreted as evidence for anthropogenic climate change. So, relating atypical local precipitation conditions to climate change may help tap into individuals’ experiential processing, sidestep polarization, and tailor communications at the local level.