Browse

You are looking at 71 - 80 of 201 items for :

  • Refine by Access: All Content x
Clear All
Nicholas T. Luchetti
,
Jessica R. P. Sutton
,
Ethan E. Wright
,
Michael C. Kruk
, and
John J. Marra

Abstract

There are more than 2,000 islands across Hawaii and the U.S.-Affiliated Pacific Islands (USAPI), where freshwater resources are heavily dependent upon rainfall. Many of the islands experience dramatic variations in precipitation during the different phases of the El Niño–Southern Oscillation (ENSO). Traditionally, forecasters in the region relied on ENSO climatologies based on spatially limited in situ data to inform their seasonal precipitation outlooks. To address this gap, a unique NOAA/NASA collaborative project updated the ENSO-based rainfall climatology for the Exclusive Economic Zones (EEZs) encompassing Hawaii and the USAPI using NOAA’s PERSIANN Climate Data Record (CDR). The PERSIANN-CDR provides a 30-yr record of global daily precipitation at 0.25° resolution (∼750 km2 near the equator). This project took place over a 10- week NASA DEVELOP National Program term and resulted in a 478-page climatic reference atlas. This atlas is based on a 30-yr period from 1 January 1985 through 31 December 2014 and complements station data by offering an enhanced spatial representation of rainfall averages.

Regional and EEZ-specific maps throughout the atlas illustrate the percent departure from average for each season based on the Oceanic Niño Index (ONI) for different ENSO phases. To facilitate intercomparisons across locations, this percentage-based climatology was provided to regional climatologists, forecasters, and outreach experts within the region. Anomalous wet and dry maps for each ENSO phase are used by the regional constituents to better understand precipitation patterns across their regions and to produce more accurate forecasts to inform adaptation, conservation, and mitigation options for drought and f looding events.

Full access
Katie A. Wilson
,
Pamela L. Heinselman
, and
Ziho Kang

Abstract

Eye-tracking technology can observe where and how someone’s eye gaze is directed, and therefore provides information about one’s attention and related cognitive processes in real time. The use of eye-tracking methods is evident in a variety of research domains, and has been used on few occasions within the meteorology community. With the goals of Weather Ready Nation in mind, eye-tracking applications in meteorology have so far supported the need to address how people interpret meteorological information through televised forecasts and graphics. However, eye tracking has not yet been applied to learning about forecaster behavior and decision processes. In this article, we consider what current methods are being used to study forecasters and why we believe eye tracking is a method that should be incorporated into our efforts. We share our first data collection of an NWS forecaster’s eye gaze data, and explore the types of information that these data provide about the forecaster’s cognitive processes. We also discuss how eye-tracking methods could be applied to other aspects of operational meteorology research in the future, and provide motivation for further exploration on this topic.

Full access
Russ S. Schumacher

Abstract

Floods and flash floods are, by their nature, a multidisciplinary problem: they result from a convergence of atmospheric conditions, the underlying topography, hydrological processes, and the built environment. Research aimed at addressing various aspects of floods, on the other hand, often follows paths that do not directly address all of these fundamental connections. With this in mind, the NSF-sponsored Studies of Precipitation, Flooding, and Rainfall Extremes Across Disciplines (SPREAD) workshop was organized and held in Colorado during the summers of 2013 and 2014. SPREAD brought together a group of 27 graduate students from a wide variety of academic disciplines, but with the unifying theme being research interests in extreme precipitation or flooding. During the first meeting of the workshop, groups of graduate student participants designed interdisciplinary research projects that they then began work on over the intervening year, with the second meeting providing a venue to present their results. This article will outline the preliminary findings of these research efforts. Furthermore, the workshop participants had the unique and meaningful experience of visiting several locations in Colorado that had flooded in the past, and then visiting them again in the aftermath of the devastating 2013 floods. In total, the workshop resulted in several fruitful research activities that will advance understanding of precipitation and flooding. Even more importantly, the workshop fostered the development of a network of early-career researchers and practitioners who will be “multilingual” in terms of scientific disciplines, and who are poised to lead within their respective careers and across the scientific community.

Full access
Oscar Pizarro
,
Nadin Ramírez
,
Manuel I. Castillo
,
Ursula Cifuentes
,
Winston Rojas
, and
Matias Pizarro-Koch

Abstract

Gliders have become an efficient and reliable oceanographic platform for measuring physical and biogeochemical properties of the seawater, and the global glider fleet is rapidly expanding. In Chile, glider observations have been carried out in very different oceanographic environments, from the mild upwelling region of subtropical northern Chile to the channels of southern Patagonia. Herein, we briefly present observations and results obtained in the oxygen minimum zone off Concepcion (∼36°30′S). Many new features have been observed in this region thanks to the relatively high resolution of the glider measurements. Future plans for the glider program include an oceanic time series off central Chile that will contribute to the regional observing system of the ocean and allow evaluations of low-frequency changes like those associated with El Niño and La Niña events.

Full access
Andreas Schiller
,
Fraser Davidson
,
Paul M. DiGiacomo
, and
Kirsten Wilmer-Becker
Full access
Anders V. Lindfors
and
Lasse Ylianttila

Abstract

A tailored camera setup has been used to take photographs of the atmosphere and the environment as seen in the ultraviolet (UV) wavelength band. These photographs make visible what the human eye cannot normally perceive—in particular, the effects of the increasingly strong scattering of UV radiation by the molecular atmosphere. This scattering of sunlight by air molecules is commonly known as Rayleigh scattering, and its scattering efficiency is inversely proportional to the fourth power of the wavelength; the shorter the wavelength, the stronger the scattering. The blue color of the cloud-free sky is a well-known consequence of this, while it is also known that radiation in the UV band is even more diffuse than blue light. The UV photographs presented here demonstrate these effects of Rayleigh scattering. They show, for example, how clouds are much harder to distinguish from the background (the sky) in the UV than in the visible band, and how shadows tend to disappear in the UV. Thereby, these photographs provide intuitive insight into the physics of Rayleigh scattering, and help connect the typically abstract and theoretical information of textbooks and scientific articles with a more concrete understanding of the effects of Rayleigh scattering.

Full access
Takemasa Miyoshi
,
Masaru Kunii
,
Juan Ruiz
,
Guo-Yuan Lien
,
Shinsuke Satoh
,
Tomoo Ushio
,
Kotaro Bessho
,
Hiromu Seko
,
Hirofumi Tomita
, and
Yutaka Ishikawa

Abstract

Sudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship “K” supercomputer, we can synergistically integrate “big simulations” of 100 parallel simulations of a convective weather system at 100-m grid spacing and “big data” from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s—two orders of magnitude more data than the currently used parabolic-antenna radar. This “big data assimilation” system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world’s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.

Full access
Edward N. Rappaport
and
B. Wayne Blanchard
Full access
Sandra Starkweather
and
Taneil Uttal
Full access
Bernadette Woods Placky
,
Edward Maibach
,
Joe Witte
,
Bud Ward
,
Keith Seitter
,
Ned Gardiner
,
David Herring
, and
Heidi Cullen

Abstract

Local TV meteorologists are optimally positioned to educate the public about the local implications of global climate change: They have high public trust as a source of climate science information, local TV is the #1 source of weather information in America, and most weathercasters have relevant scientific training and excellent communication skills. Surveys show that most TV meteorologists would like to report on climate change, but lack of time, lack of broadcast-quality graphics, and lack of access to appropriate experts are barriers that inhibit such coverage.

With funding from the National Science Foundation and philanthropic foundations, we developed Climate Matters as an educational resources program to help interested local TV meteorologists educate their viewers about the local impacts of global climate change. Currently, the program provides more than 160 participating weathercasters nationwide with weekly localized broadcast-ready graphics and script ideas, short videos, and opportunities for brief (hour-long webinars) and more intensive (day-long seminars) professional development sessions—at no cost to participating weathercasters. We aim to more than double participation in the program over the next several years.

This article will chronicle the development of Climate Matters over the past five years—beginning with a pilot test at a single news station in Columbia, South Carolina, that was shown to be effective at helping viewers better understand climate change and culminating in a comprehensive national educational resource program that is available to all interested weathercasters.

Full access