Browse

You are looking at 71 - 80 of 118,680 items for :

  • Refine by Access: All Content x
Clear All
He Sun, Fengge Su, Zhihua He, Tinghai Ou, Deliang Chen, Zhenhua Li, and Yanping Li

Abstract

In this study, two sets of precipitation estimates that are based on the regional Weather Research and Forecasting (WRF) Model—the high Asia refined analysis (HAR) and outputs with a 9-km resolution from WRF (WRF-9km)—are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20%–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias from −11% to 3%), whereas the HAR performs well in the upper Indus and upper Brahmaputra basins (with NSE of 0.6 and bias from −15% to −9%). Both of the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.

Restricted access
Michael A. Spall

Abstract

The frequency and latitudinal dependence of the midlatitude wind-driven meridional overturning circulation (MOC) is studied using theory and linear and nonlinear applications of a quasigeostrophic numerical model. Wind forcing is varied either by changing the strength of the wind or by shifting the meridional location of the wind stress curl pattern. At forcing periods of less than the first-mode baroclinic Rossby wave basin crossing time scale, the linear response in the middepth and deep ocean is in phase and opposite to the Ekman transport. For forcing periods that are close to the Rossby wave basin crossing time scale, the upper and deep MOC are enhanced, and the middepth MOC becomes phase shifted, relative to the Ekman transport. At longer forcing periods the deep MOC weakens and the middepth MOC increases, but eventually for long enough forcing periods (decadal) the entire wind-driven MOC spins down. Nonlinearities and mesoscale eddies are found to be important in two ways. First, baroclinic instability causes the middepth MOC to weaken, lose correlation with the Ekman transport, and lose correlation with the MOC in the opposite gyre. Second, eddy thickness fluxes extend the MOC beyond the latitudes of direct wind forcing. These results are consistent with several recent studies describing the four-dimensional structure of the MOC in the North Atlantic Ocean.

Restricted access
Huijun Huang, Jinnan Yuan, Guanhuan Wen, Xueyan Bi, Ling Huang, and Mingsen Zhou

Abstract

Tropical depressions formed over the South China Sea usually produce severe flooding and wind damage when they develop into a storm and make landfall. To provide an early warning, forecasters should know when, and if, a tropical depression will develop into a tropical storm. To better understand and predict such development, we examine the dynamic and thermodynamic variables of 74 tropical depressions over the South China Sea, 52 of which developed into storms, hereafter “developing,” with the remaining being classified as “nondeveloping.” Using the National Centers for Environmental Prediction Final (NCEP FNL) data, verified with ECMWF forecast data, we examine the dynamic and thermodynamic statistics that characterize these tropical cyclones. Based on these characteristics, we propose seven criteria to determine whether a tropical depression will develop. Five had been used before, but two new criteria are also found to be useful. These two are associated with the diabatic heating rate and help to determine whether a tropical cyclone diurnal cycle exists and whether the convection system remains intact in the center: 1) presence of a regular diurnal variation of the diabatic heating rate at the center and 2) occurrence of specific peaks in the radiative-heating profile. We test all seven criteria on all tropical depression cases in 2018/19 before the system developed or decayed, showing that these criteria can help to operationally identify whether or not a tropical depression develops into a tropical storm with an average lead time of 36.6 h.

Restricted access
Charles N. Helms and Lance F. Bosart

Abstract

On 4–5 September 2013, a relatively shallow layer of northerly dry airflow was observed just west of the core deep convection associated with the low-level center of the pre-Gabrielle (2013) tropical disturbance. Shortly thereafter, the core deep convection of the disturbance collapsed after having persisted for well over 24 h. The present study provides an in-depth analysis of the interaction between this dry airflow layer and the pre-Gabrielle disturbance core deep convection using a combination of observations, reanalysis fields, and idealized simulations. Based on the analysis, we conclude that the dry airflow layer played an important role in the collapse of the core deep convection in the pre-Gabrielle disturbance. Furthermore, we found that the presence of storm-relative flow was critical to the inhibitive effects of the dry airflow layer on deep convection. The mechanism by which the dry airflow layer inhibited deep convection was found to be enhanced dry air entrainment.

Restricted access
Hong-Chang Ren, Jinqing Zuo, and Weijing Li

Abstract

The interannual variability of boreal summer sea surface temperature (SST) in the tropical Atlantic displays two dominant modes, the Atlantic zonal mode highlighting SST variations in the equatorial–southern tropical Atlantic (ESTA) region and the northern tropical Atlantic (NTA) mode focusing on SST fluctuations in the NTA region except in the Gulf of Guinea. Observational evidence indicates that both the boreal summer ESTA and NTA warming are accompanied by a pair of anomalous low-level anticyclones over the western tropical Pacific, and the NTA-related anticyclone is more obvious than the ESTA-related one. Both atmosphere-only and partially coupled experiments conducted with the Community Earth System Model version 1.2 support the observed NTA–Pacific teleconnection. In contrast, the ESTA-induced atmospheric circulation response is negligible over the tropical Pacific in the atmosphere-only experiments, and although the response becomes stronger in the partially coupled experiments, obvious differences still exist between the simulations and observation. The ESTA-induced atmospheric circulation response features an anomalous low-level cyclone over the western tropical Pacific in the partially coupled experiments, opposite to its observed counterpart. It is found that the ESTA warming coincides with significantly La Niña–like SST anomalies in the central–eastern equatorial Pacific, the influence of which on the tropical atmospheric circulation is opposite to that of the ESTA warming, and therefore contributes to difference between the ESTA-related simulations and observation. Moreover, the cold climatological mean SST in the ESTA region is unfavorable to enhancing the ESTA–Pacific teleconnection during boreal summer.

Restricted access
Jih-Wang Aaron Wang and Prashant D. Sardeshmukh

Abstract

Global upper-tropospheric kinetic energy (KE) spectra in several global atmospheric circulation datasets are examined. The datasets considered include ERA-Interim, JRA-55, and ERA5 and two versions of NOAA GFS analyses at horizontal resolutions ranging from 0.7° to 0.12°. The mesoscale portions of the spectra are found to be highly inconsistent. This is shown to be mainly due to inconsistencies in the scale-dependent numerical damping and in the large contributions to the global mesoscale KE from the KE in convective regions and near orography. The spectra also generally have a steeper mesoscale slope than the −5/3 slope of the observational Nastrom–Gage spectrum pursued at many modeling centers. The sensitivity of the slope in global models to 1) stochastically perturbing diabatic tendencies and 2) decreasing the horizontal hyperviscosity coefficient is explored in large ensembles of 10-day forecasts made with the NCEP GFS (0.7° grid) model. Both changes lead to larger mesoscale KE and a flatter spectral slope. The effect is stronger in the modified hyperviscosity experiment. These results show that (i) despite assimilating vastly more observations than used in the original Nastrom–Gage studies, current high-resolution global analyses still do not converge to a single “true” global mesoscale KE spectrum, and (ii) model KE spectra can be made flatter not just by increasing model resolution but also by perturbing model physics and decreasing horizontal diffusion. Such sensitivities and lack of consensus on the spectral slope also raise the possibility that the true global mesoscale spectral slope may not be a precisely −5/3 slope.

Restricted access
Aaron J. Hill, Christopher C. Weiss, and David C. Dowell

Abstract

Ensemble forecasts are generated with and without the assimilation of near-surface observations from a portable, mesoscale network of StickNet platforms during the Verification of the Origins of Rotation in Tornadoes Experiment–Southeast (VORTEX-SE). Four VORTEX-SE intensive observing periods are selected to evaluate the impact of StickNet observations on forecasts and predictability of deep convection within the Southeast United States. StickNet observations are assimilated with an experimental version of the High-Resolution Rapid Refresh Ensemble (HRRRE) in one experiment, and withheld in a control forecast experiment. Overall, StickNet observations are found to effectively reduce mesoscale analysis and forecast errors of temperature and dewpoint. Differences in ensemble analyses between the two parallel experiments are maximized near the StickNet array and then either propagate away with the mean low-level flow through the forecast period or remain quasi-stationary, reducing local analysis biases. Forecast errors of temperature and dewpoint exhibit periods of improvement and degradation relative to the control forecast, and error increases are largely driven on the storm scale. Convection predictability, measured through subjective evaluation and objective verification of forecast updraft helicity, is driven more by when forecasts are initialized (i.e., more data assimilation cycles with conventional observations) rather than the inclusion of StickNet observations in data assimilation. It is hypothesized that the full impact of assimilating these data is not realized in part due to poor sampling of forecast sensitive regions by the StickNet platforms, as identified through ensemble sensitivity analysis.

Open access
Meilin Zhu, Lonnie G. Thompson, Huabiao Zhao, Tandong Yao, Wei Yang, and Shengqiang Jin

Abstract

Glacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy–mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed that Xiao Anglong Glacier is close to a balanced condition, with an average value of −53 ± 185 mm water equivalent (w.e.) yr−1 for 1968–2019. The interannual mass balance variability during 1968–2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968–2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83 ± 185, −210 ± 185, and −10 ± 185 mm w.e. yr−1 for 1968–90, 1991–2012, and 2013–19, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.

Restricted access
Samson Hagos, L. Ruby Leung, Oluwayemi Garuba, and Christina M. Patricola

Abstract

The frequency of North Pacific atmospheric rivers (ARs) affects water supply and flood risk over western North America. Thus, understanding factors that affect the variability of landfalling AR frequency is of scientific and societal importance. This study aims at identifying the sources of the moisture for North Pacific ARs and assessing how different modes of variability modulate these sources. To this end, the sources and variability of the background divergent component of the integrated moisture flux (DIVT) in ARs are identified using MERRA reanalysis. It is shown that in the boreal winter, this background DIVT in ARs is related to the outflow from the subsidence over the subtropics that transports moisture northward, while in summer it is related to the Asian monsoon and it transports moisture northwestward. This leads to a seasonal northwest–southeast movement of the AR frequency climatology. At the intraseasonal scale, propagation of the Madden–Julian oscillation introduces an anticlockwise rotation of the background DIVT, with northward transport in phases 1 and 2, westward in 3 and 4, southward in 5 and 6, and eastward in 7 and 8, making landfall over the west coast of North America most likely during the last two phases. Similarly, El Niño–Southern Oscillation variability also affects the frequency of ARs through modulation of the westerly background DIVT, favoring landfall over the U.S. West Coast during strong El Niño phases. It is shown that in general the likelihood of AR landfall over the western United States is correlated with the zonal background DIVT over northeastern Pacific.

Open access
Yonggang Liu, Peng Liu, Dawei Li, Yiran Peng, and Yongyun Hu

Abstract

It has been demonstrated previously that atmospheric dust loading during the Precambrian could have been an order of magnitude higher than in the present day and could have cooled the global climate by more than 10°C. Here, using the fully coupled atmosphere–ocean general circulation model CESM1.2.2, we determine whether such dust loading could have facilitated the formation of Neoproterozoic snowball Earth events. Our results indicate that global dust emission decreases as atmospheric CO2 concentration (pCO2) decreases due to increasing snow coverage, but atmospheric dust loading does not change or even increases due to decreasing precipitation and strengthening June–August (JJA) Hadley circulation. The latter lifts more dust particles to high altitude and thus increases the lifetime of these particles. As the climate becomes colder and the surface albedo higher, the cooling effect of dust becomes weaker; when the global mean surface temperature is approximately −13°C, dust has negligible cooling effect. The threshold pCO2 at which Earth enters a snowball state is between 280 to 140 ppmv when there is no dust, and is similar when there is relatively light dust loading (~4.4 times the present-day value). However, the threshold pCO2 decreases dramatically to between 70 and 35 ppmv when there is heavy dust loading (~33 times the present-day value), due to the decrease in planetary albedo, which increases the energy input into the climate system. Therefore, dust makes it more difficult for Earth to enter a snowball state.

Restricted access