Browse

You are looking at 71 - 80 of 8,078 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Abhishek Savita, Jan D. Zika, Catia M. Domingues, Simon J. Marsland, Gwyn Dafydd Evans, Fabio Boeira Dias, Ryan M. Holmes, and Andrew McC. Hogg

Abstract

Ocean circulation and mixing regulate Earth’s climate by moving heat vertically within the ocean. We present a new formalism to diagnose the role of ocean circulation and diabatic processes in setting vertical heat transport in ocean models. In this formalism we use temperature tendencies, rather than explicit vertical velocities, to diagnose circulation. Using quasi-steady-state simulations from the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2), we diagnose a diathermal overturning circulation in temperature–depth space. Furthermore, projection of tendencies due to diabatic processes onto this coordinate permits us to represent these as apparent overturning circulations. Our framework permits us to extend the concept of “Super Residual Transport,” which combines mean and eddy advection terms with subgridscale isopycnal mixing due to mesoscale eddies but excludes small-scale three-dimensional turbulent mixing effect, to construct a new overturning circulation—the “Super Residual Circulation” (SRC). We find that in the coarse-resolution version of ACCESS-OM2 (nominally 1° horizontal resolution) the SRC is dominated by an ~11-Sv (1 Sv ≡ 106 m3 s−1) circulation that transports heat upward. The SRC’s upward heat transport is ~2 times as large in a finer-horizontal-resolution (0.1°) version of ACCESS, suggesting that a differing balance of super-residual and parameterized small-scale processes may emerge as eddies are resolved. Our analysis adds new insight into superresidual processes, because the SRC elucidates the pathways in temperature and depth space along which water mass transformation occurs.

Open access
Jianguo Yuan and Jun-Hong Liang

Abstract

Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman buoyancy flux (or the Ekman–Stokes buoyancy flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.

Restricted access
Ying Zhang, Yan Du, Tangdong Qu, Yu Hong, Catia M. Domingues, and Ming Feng

Abstract

The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004–18. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ = 26.7–26.8 kg m−3 in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004–18. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy fluxes. An increase in the mixed layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre.

Restricted access
Astrid Pacini, Robert S. Pickart, Isabela A. Le Bras, Fiammetta Straneo, N. Penny Holliday, and Michael A. Spall

Abstract

The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.

Restricted access
Chiung-Yin Chang and Malte F. Jansen

Abstract

Although the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The overturning in the reentrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.

Open access
Charles W. McMahon, Joseph J. Kuehl, and Vitalii A. Sheremet

Abstract

The dynamics of gap-leaping western boundary currents (e.g., the Kuroshio intrusion, the Loop Current) are explored through rotating table experiments and a numerical model designed to replicate the experimental apparatus. Simplified experimental and numerical models of gap-leaping systems are known to exhibit two dominant states (leaping or penetrating into the gap) as the inertia of the current competes with vorticity constraints (in this case the β effect). These systems are also known to admit multiple states with hysteresis. To advance toward more realistic oceanographic scenarios, recent studies have explored the effects of islands, mesoscale eddies, and variable baroclinic deformation radii on the dynamical system. Here, the effect of throughflow forcing is considered, with particle tracking velocimetry (PTV) used in the laboratory experiments. Mean transport in or out of the gap is found to significantly shift the hysteresis range as well as change its width. Because of these transformations, changes in throughflow can induce transitions in the gap-leaping system when near a critical state (leaping-to-penetrating/penetrating-to-leaping). Results from the study are interpreted within a nonlinear dynamical framework and various properties of the system are explored.

Restricted access
Ruibin Ding, Jiliang Xuan, Tao Zhang, Lei Zhou, Feng Zhou, Qicheng Meng, and In-Sik Kang

Abstract

Eddy-induced heat transport (EHT) in the South China Sea (SCS) is important for the heat budget. However, knowledge of its variability is limited owing to discrepancies arising from the limitation of the downgradient method and uncertainties arising from numerical models. Herein, we investigated the spatiotemporal variability and dynamics of EHT using a well-validated assimilated model. In particular, to the southeast of Vietnam (SEV) and west of Luzon Strait (WLS), significant values of annual mean EHT are observed and most EHT is confined in the upper 400 m. EHT also exhibits significant seasonality, and the largest EHT amplitude in autumn at SEV is mainly driven by the wind stress curl, while that in winter at WLS is mainly related to the Kuroshio intrusion. Energy budget analysis reveals that both the barotropic and baroclinic instabilities increase the eddy kinetic energy in autumn at SEV, whereas only the barotropic instability contributes to the eddy kinetic energy at WLS in winter. Specially, an upgradient EHT is observed at WLS in all four seasons, characterized by the same directions between EHT and mean temperature gradient. The upgradient EHT at WLS is induced by the baroclinic instability through an inverse energy transfer, which is generated by the interaction between the Kuroshio intrusion and topography below the surface layer. Moreover, the most significant upgradient EHT in winter shows a wave-like southwestward-propagating pattern in the subsurface layer.

Open access
Preston Spicer, Kelly L. Cole, Kimberly Huguenard, Daniel G. MacDonald, and Michael M. Whitney

Abstract

The mixing of river plumes into the coastal ocean influences the fate of riverborne tracers over the inner shelf, though the relative importance of mixing mechanisms under different environmental conditions is not fully understood. In particular, the contribution to plume mixing from bottom-generated shear stresses, referred to as tidal mixing, is rarely considered important relative to frontal and stratified shear (interfacial) mixing in surface advected plumes. The effect of different mixing mechanisms is investigated numerically on an idealized, tidally pulsed river plume with varying river discharge and tidal amplitudes. Frontal, interfacial, and tidal mixing are quantified via a mixing energy budget to compare the relative importance of each to the overall buoyancy flux over one tide. Results indicate that tidal mixing can dominate the energy budget when the tidal mixing power exceeds that of the input buoyancy flux. This occurs when the nondimensional number, RiER01 (the estuarine Richardson number divided by the mouth Rossby number), is generally less than 1. Tidal mixing accounts for between 60% and 90% of the net mixing when RiER01<1, with the largest contributions during large tides and low discharge. Interfacial mixing varies from 10% to 90% of total mixing and dominates the budget for high discharge events with relatively weaker tides (RiER01>1). Frontal mixing is always less than 10% of total mixing and never dominates the budget. This work is the first to show tidal mixing as an important mixing mechanism in surface advected river plumes.

Open access
Varvara E. Zemskova, Brian L. White, and Alberto Scotti

Abstract

We present numerical results for an idealized rotating, buoyancy- and wind-forced channel as a simple model for the Southern Ocean branch of the meridional overturning circulation (MOC). Differential buoyancy forcing is applied along the top horizontal surface, with surface cooling at one end (to represent the pole) and surface warming at the other (to represent the equatorial region) and a zonally re-entrant channel to represent the Antarctic Circumpolar Current (ACC). Zonally uniform surface wind forcing is applied with a similar pattern to the westerlies and easterlies with varying magnitude relative to the buoyancy forcing. The problem is solved numerically using a 3D direct numerical simulations (DNS) model based on a finite-volume solver for the Boussinesq Navier–Stokes equations with rotation. The overall dynamics, including large-scale overturning, baroclinic eddying, turbulent mixing, and resulting energy cascades, are studied by calculating terms in the energy budget using the local available potential energy framework. The basic physics of the overturning in the Southern Ocean are investigated at multiple scales and the output from the fully resolved DNS simulations is compared with the results from previous studies of the global (ECCO2) and Southern Ocean eddy-permitting state estimates. We find that both the magnitude and shape of the zonal wind stress profile are important to the spatial pattern of the overturning circulation. However, the available potential energy budget and the diapycnal mixing are not significantly affected by the surface wind stress and are primarily set by the buoyancy forcing at the surface.

Restricted access
Bingrong Sun, Shengpeng Wang, Man Yuan, Hong Wang, Zhao Jing, Zhaohui Chen, and Lixin Wu

Abstract

Near-inertial internal waves (NIWs) are thought to play an important role in powering the turbulent diapycnal mixing in the ocean interior. Nevertheless, the energy flux into NIWs below the surface boundary layer (SBL) in the global ocean is still poorly understood. This key problem is addressed in this study based on a Community Earth System Model (CESM) simulation with a horizontal resolution of ~0.1° for its oceanic component and ~0.25° for its atmospheric component. The CESM shows good skill in simulating NIWs globally, reproducing the observed magnitude and spatial pattern of surface NIW currents and wind power on NIWs (W I). The simulated downward flux of NIW energy (F SBL) at the SBL base is positive everywhere. Its quasi-global integral (excluding the region within 5°S–5°N) is 0.13 TW, about one-third the value of W I. The ratio of local F SBL to W I varies substantially over the space. It exhibits an increasing trend with the enstrophy of balanced motions (BMs) and a decreasing trend with W I. The kinetic energy transfer from model-resolved BMs to NIWs is positive from the SBL base to 600 m but becomes negative farther downward. The quasi-global integral of energy transfer below the SBL base is two orders of magnitude smaller than that of F SBL, suggesting the resolved BMs in the CESM simulations making negligible contributions to power NIWs in the ocean interior.

Restricted access