Browse

You are looking at 71 - 80 of 12,990 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Qi Sun
,
Haikun Zhao
,
Philip J. Klotzbach
,
Xiang Han
,
Jun Gao
,
Jin Wu
, and
Zhanhong Ma

Abstract

There has been increased focus in recent years on the impact of the Pacific Meridional Mode (PMM) and the Atlantic Meridional Mode (AMM) on weather and climate events. This study shows an increased synergistic impact of both the PMM and AMM on eastern North Pacific (ENP) extended boreal summer (June-November) tropical cyclone frequency (TCF) since the 1990s. This increase in the combined impact of both the PMM and AMM on ENP TCF is mainly due to a stronger modulation of the AMM on TCF since the early 1990s and of a stronger modulation of the PMM on TCF since the late 1990s. A budget analysis of the genesis potential index highlights the important contribution of changes in vertical wind shear to the recent strengthened AMM-TCF relationship, while potential intensity and vertical wind shear are the two most important drivers of the recent increase in the PMM-TCF relationship. This intensified association is largely explained by changes in the mean state of sea surface temperatures in the tropical Atlantic associated with the Atlantic Muit-decadal Oscillation (AMO) and trade wind magnitude in the subtropical Pacific Ocean associated with the Pacific Decadal Oscillation (PDO). This study highlights an asymmetric effect of the AMO and PDO on these two meridional modes and ENP TC genesis frequency and provides a better understanding of ENP TC activity on interannual-to-decadal time scales.

Restricted access
Jie Wang
,
Dake Chen
,
Tao Lian
,
Baosheng Li
,
Xiang Han
, and
Ting Liu

Abstract

The sudden halting of the extreme 2014/15 El Niño expected by many was attributed to the absence of westerly wind bursts (WWBs) in late spring and early summer 2014 in previous works, yet the cause of the lack of WWBs was overlooked. Using the ERA5 reanalysis and IBTrACS dataset, as well as a set of coupled model experiments, we showed that the absence of WWBs in May efficiently downgraded the intensity of the 2014/15 El Niño from a moderate to a weak event, and was closely associated with a strong suppressive MJO originating from the central tropical Indian Ocean in mid-April 2014. The suppressive MJO underwent two pathways once passing through the Maritime Continent in early May. Along the eastward pathway, the strong suppressive MJO prevailed over the western-central equatorial Pacific, directly prohibiting the occurrence of WWBs at the equator via inducing equatorial easterly anomaly. Along the northeastward pathway, the downward motions with relative dry air and strong vertical zonal wind shear associated with the suppressive MJO suppressed the activity of the tropical cyclones in the northwestern tropical Pacific, another source of WWBs. Our results indicate that the contributions of MJO to the development of El Niño from both the direct and indirect ways should be taken into account for improving El Niño prediction.

Restricted access
Siegfried D. Schubert
,
Yehui Chang
,
Anthony M. DeAngelis
,
Young-Kwon Lim
,
Natalie P. Thomas
,
Randal D. Koster
,
Michael G. Bosilovich
,
Andrea M. Molod
,
Allison Collow
, and
Amin Dezfuli

Abstract

In late December of 2022 and the first half of January 2023 an unprecedented series of atmospheric rivers (ARs) produced near record heavy rains and flooding over much of California. Here we employ the NASA GEOS AGCM run in a “replay” mode, together with more idealized simulations with a stationary wave model, to identify the remote forcing regions, mechanisms and underlying predictability of this flooding event. In particular, the study addresses the underlying causes of a persistent positive Pacific/North American (PNA) - like circulation pattern that facilitated the development of the ARs. We show that that pattern developed in late December as a result of vorticity forcing in the North Pacific jet exit region. We further provide evidence that this vorticity forcing was the result of a chain of events initiated in mid-December with the development of a Rossby wave (as a result of forcing linked to the MJO) that propagated from the northern Indian Ocean into the North Pacific. As such, both the initiation of the event and the eventual development of the PNA depended critically on internally-generated Rossby wave forcings, with the North Pacific jet playing a key role. This, combined with contemporaneous SST (La Niña) forcing that produced a circulation response in the AGCM that was essentially opposite to the positive PNA, underscores the fundamental lack of predictability of the event at seasonal time scales. Forecasts produced with the GEOS coupled model suggests that useful skill in predicting the PNA and extreme precipitation over California was in fact limited to lead times shorter than about 3 weeks.

Restricted access
Daniel E. Amrhein
,
Dafydd Stephenson
, and
LuAnne Thompson

Abstract

This paper describes a framework for identifying dominant atmospheric drivers of ocean variability. The method combines statistics of atmosphere–ocean fluxes with physics from an ocean general circulation model to derive atmospheric patterns optimized to excite variability in a specified ocean quantity of interest. We first derive the method as a weighted principal components analysis and illustrate its capabilities in a toy problem. Next, we apply our analysis to the problem of interannual upper ocean heat content (HC) variability in the North Atlantic Subpolar Gyre (SPG) using the adjoint of the MITgcm and atmosphere–ocean fluxes from the ECCOv4-r4 state estimate. An unweighted principal components analysis reveals that North Atlantic heat and momentum fluxes in ECCOv4-r4 have a range of spatiotemporal patterns. By contrast, dynamics-weighted principal components analysis collapses the space of these patterns onto a small subset—principally associated with the North Atlantic Oscillation—that dominates interannual SPG HC variance. By perturbing the ECCOv4-r4 state estimate, we illustrate the pathways along which variability propagates from the atmosphere to the ocean in a nonlinear ocean model. This technique is applicable across a range of problems across Earth system components, including in the absence of a model adjoint.

Significance Statement

While the oceans have absorbed 90% of the excess heat associated with human-forced climate change, the change in the ocean’s heat content is not steady, with peaks and troughs superimposed upon a general increase. These fluctuations come from chaotic changes in the atmosphere and ocean and can be hard to disentangle. We use this case of ocean heat content variability to introduce a new method for determining the patterns of weather and climate in the atmosphere that are most effective at generating fluctuations in the ocean. To do this, we combine the statistics of recent atmospheric activity with output from a state-of-the-art numerical ocean model that reveals physical processes driving changes in ocean quantities including ocean heat content. This approach suggests that the atmospheric patterns that stimulate the most energetic changes in ocean heat content in the northern North Atlantic are not necessarily the most energetic patterns present in the atmosphere. We test our findings by preventing these patterns from affecting the ocean in our numerical model and measure a strong reduction in ocean heat content fluctuations.

Restricted access
Chaim I. Garfinkel
,
Benny Keller
,
Orli Lachmy
,
Ian White
,
Edwin P. Gerber
,
Martin Jucker
, and
Ori Adam

Abstract

While a poleward shift of the near-surface jet and storm track in response to increased greenhouse gases appears to be robust, the magnitude of this change is uncertain and differs across models, and the mechanisms for this change are poorly constrained. An intermediate complexity GCM is used in this study to explore the factors governing the magnitude of the poleward shift and the mechanisms involved. The degree to which parameterized subgrid-scale convection is inhibited has a leading-order effect on the poleward shift, with a simulation with more convection (and less large-scale precipitation) simulating a significantly weaker shift, and eventually no shift at all if convection is strongly preferred over large-scale precipitation. Many of the physical processes proposed to drive the poleward shift are equally active in all simulations (even those with no poleward shift). Hence, we can conclude that these mechanisms are not of leading-order significance for the poleward shift in any of the simulations. The thermodynamic budget, however, provides useful insight into differences in the jet and storm track response among the simulations. It helps identify midlatitude moisture and latent heat release as a crucial differentiator. These results have implications for intermodel spread in the jet, hydrological cycle, and storm track response to increased greenhouse gases in intermodel comparison projects.

Restricted access
Ping Chen
,
Junqiang Yao
,
Weiyi Mao
,
Liyun Ma
,
Jing Chen
,
Tuoliewubieke Dilinuer
, and
Shujuan Li

Abstract

In this study, the interdecadal variations of extreme precipitation in May over southwestern Xinjiang (SWX) and related mechanisms were investigated. The extreme precipitation in May over SWX exhibited a decadal shift in the 1990s (negative phase during 1970–86 and positive phase during 2003–18). The decadal shift corresponded to strengthened moist airflow from the Indian Ocean and an anomalous cyclone over SWX during 2003–18. It is found that the interdecadal change of the wave trains in Eurasia might account for the differences in atmospheric circulation between the above two periods. Further analyses reveal that spring snow cover over Eurasia is closely linked to extreme precipitation over SWX during 2003–18. Increased snow cover in western Europe (WE) from February to March is accompanied by more snowmelt. This resulted in less local snow cover and lower albedo, leading to warm temperatures over WE in May. The changes in temperatures increase the local 1000–500-hPa thickness over WE. These factors provide favorable conditions for the enhancement of the Eurasian wave trains, which significantly influence extreme precipitation over SWX. On the other hand, corresponding to decreased albedo caused by the reduction of snow cover in northern Eurasia (NE) in May, anomalous surface warming occurs over NE. The anomalous warming results in positive geopotential height anomalies that intensify the meridional geopotential height gradient over Eurasia and cause an acceleration of the westerly jet in May. Anomalous upper-level divergence in SWX induced by the enhanced westerly jet provides a favorable dynamical condition for increased extreme precipitation.

Restricted access
John T. Fasullo
,
Julie M. Caron
,
Adam Phillips
,
Hui Li
,
Jadwiga H. Richter
,
Richard B. Neale
,
Nan Rosenbloom
,
Gary Strand
,
Sasha Glanville
,
Yuanpu Li
,
Flavio Lehner
,
Gerald Meehl
,
Jean-Christophe Golaz
,
Paul Ullrich
,
Jiwoo Lee
, and
Julie Arblaster

Abstract

An adequate characterization of internal modes of climate variability (MoV) is a prerequisite for both accurate seasonal predictions and climate change detection and attribution. Assessing the fidelity of climate models in simulating MoV is therefore essential; however, doing so is complicated by the large intrinsic variations in MoV and the limited span of the observational record. Large ensembles (LEs) provide a unique opportunity to assess model fidelity in simulating MoV and quantify intermodel contrasts. In this work, these goals are pursued in four recently produced LEs: the Energy Exascale Earth System Model (E3SM) versions 1 and 2 LEs, and the Community Earth System Model (CESM) versions 1 and 2 LEs. In general, the representation of global coupled modes is found to improve across successive E3SM and CESM versions in conjunction with the fidelity of the base state climate while the patterns of extratropical modes are well simulated across the ensembles. Various persistent shortcomings for all MoV are however identified and discussed. The results both demonstrate the successes of these recent model versions and suggest the potential for continued improvement in the representation of MoV with advances in model physics.

Significance Statement

Modes of variability play a critical role in prediction of seasonal to decadal climate variability and detection of forced climate change, but historically many modes have been poorly simulated by coupled climate models. Using recently produced large ensembles, this work demonstrates the improved simulation of a broad range of internal modes in successive versions of the E3SM and CESM and discusses opportunities for further advances.

Restricted access
Hamish D. Prince
and
Tristan S. L’Ecuyer

Abstract

Satellite observations reveal that decreasing surface albedo in both polar regions is increasing the absorption of solar radiation, but the disposition of this absorbed energy is fundamentally different. Fluxes of absorbed solar radiation, emitted thermal radiation, and net energy imbalances are assessed for both polar regions for the last 21 years in the Clouds and Earth’s Radiant Energy System record. Arctic absorbed solar radiation is increasing at 0.98 ± 0.69 W m−2 decade−1, consistent with the anticipated response to sea ice loss. However, Arctic thermal emission is responding at a similar rate of 0.94 ± 0.55 W m−2 decade−1. This is surprising since the radiative impact of ice loss would be expected to favor increasing solar absorption. We find however, that clouds substantially mask trends in Arctic solar absorption relative to clear sky while having only a modest impact on thermal emission trends. As a result, the Arctic net radiation imbalance has not changed over the period. Furthermore, variability of absorbed solar radiation explains two-thirds of the variability in annual thermal emission suggesting that Arctic thermal fluxes rapidly adjust to offset changes in solar absorption and re-establish equilibrium. Conversely, Antarctic thermal emission is not responding to the increasing (although not yet statistically significant) solar absorption of 0.59 ± 0.64 W m−2 decade−1 with less than a third of the annual thermal variability explained by accumulated solar absorption. The Arctic is undergoing rapid adjustment to increasing solar absorption resulting in no change to the net energy deficit, while increasing Antarctic solar absorption represents additional energy input into the Earth system.

Significance Statement

The polar regions of Earth are undergoing ice loss through ongoing global warming, reducing the ice cover and decreasing solar reflectivity, which would be expected to warm these regions. We use satellite observations to measure the trends in solar absorption and emitted thermal radiation over the Arctic and Antarctic for the last two decades. Arctic thermal emission is increasing at a compensating rate to solar absorption with a close relationship between these processes. Conversely, Antarctic thermal emission is not responding to solar absorption demonstrating that Antarctic surface temperatures are not significantly influenced by the region’s reflectivity. The Arctic is undergoing rapid adjustment to increasing solar absorption through warming, while increasing Antarctic solar absorption represents additional energy input into the Earth system.

Open access
Jiao Li
,
Yang Zhao
,
Deliang Chen
,
Ping Zhao
,
Chi Zhang
, and
Yinjun Wang

Abstract

Two distinct categories of weather patterns, denoted as Type 1 and Type 2, which show higher-than-expected frequency of summer heavy rainfall days (HRDs) over North China (NC), are selected from nine weather patterns categorized by the self-organizing map algorithm during 1979–2019. The respective HRDs over NC exhibit dissimilar characteristics, with Type 1 showing a northern distribution and Type 2 a southern distribution. The quantitative disparities in terms of moisture content and vertical motion are discussed in reactions to the synoptic-scale patterns associated with HRDs. The outcomes of a 20-day backward tracking, using the so-called Water Accounting Model-2layers, reveal noteworthy contrasts in moisture sources. Type 1 predominantly receives moisture from the western North Pacific, while Type 2 relies more on contributions from the Arabian Sea, Bay of Bengal, and Eurasia. However, the major moisture sources with grid cells contributing more than 0.01 mm show a consistent cumulative contribution of 77% for Type 1 and 80% for Type 2. The finding suggests that the discrepancy between the two types cannot be solely attributed to moisture supply. Further examination of the transverse and shearwise Q-vector components provides insights into how these distinct weather patterns influence HRDs by the alteration of vertical motion. In Type 1, an upper-level jet entrance induces a thermally direct secondary circulation that enhances vertical motion, while a baroclinic trough plays a dominant role in generating vertical motion in Type 2. Moreover, these unique configurations for each type of weather pattern are not only pre-existing but also intensified during HRDs.

Restricted access
Fouzia Fahrin
,
Alex O. Gonzalez
,
Brett Chrisler
, and
Justin P. Stachnik

Abstract

Longstanding climate model biases in tropical precipitation exist over the east Pacific (EP) Ocean, especially during boreal winter and spring when models have excessive Southern Hemisphere (SH) precipitation near the intertropical convergence zone (ITCZ). In this study, we document the impact of convectively coupled waves (CCWs) on EP precipitation and the ITCZ using observations and reanalyses. We focus on the months when SH precipitation peaks in observations: February–April (FMA). CCWs explain 93% of total precipitation variance in the SH, nearly double the percent (48%) of the NH during FMA. However, we note that these percentages are inflated as they inevitably include the background variance. We further investigate the three leading high-frequency wave bands: mixed Rossby–gravity waves and tropical depression–type disturbances (MRG–TD type), Kelvin waves, and n = 0 eastward inertia–gravity waves (IG0). Compared to their warm pool counterparts, these three CCWs have a more zonally elongated and meridionally narrower precipitation structure with circulations that resemble past observational studies and/or shallow water theory. We quantify the contribution of all CCWs to four different daily ITCZ “states”: Northern Hemisphere (NH) (nITCZ), SH (sITCZ), double (dITCZ), and equatorial (eITCZ) using a new precipitation-based ITCZ-state algorithm. We find that the percent of total precipitation variance explained by each of the CCWs is heightened for sITCZs and eITCZs and diminished for nITCZs. Last, we find that nITCZs are most prevalent weeks after strong CCW activity happens in the NH, whereas CCWs and sITCZs peak simultaneously in the SH.

Significance Statement

Convectively coupled atmospheric waves (CCWs) are a critical feature of tropical weather and are an important source of precipitation near the region of highest precipitation on Earth called the intertropical convergence zone (ITCZ). Given three decades of climate model biases in CCWs and ITCZ precipitation over the east Pacific (EP) Ocean during spring, few studies have examined the relationship between CCWs and the springtime EP ITCZ. We explored the CCWs and EP ITCZ relationship through calculations of the percent of precipitation that comes from CCWs. A significant portion of the tropical precipitation is associated with CCWs during spring. CCWs are even more impactful when the ITCZ is in the SH or on the equator, which are both problematic in climate models.

Open access