Browse

You are looking at 81 - 90 of 12,989 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Cameron Bertossa
and
Tristan L’Ecuyer

Abstract

Previous studies have shown the Arctic exhibits two preferred radiative states, one that is regarded as “radiatively opaque” and the other as “radiatively clear”; this presents as bimodality in the surface longwave flux distributions. How frequently these two states occur and what causes them to persist has significant implications for the polar climate. Furthermore, in the presence of multimodality, evaluating models based solely on their ability to resolve the mean and variance of a distribution can lead to a poor representation of the physical evolution of our climate. This study takes a holistic view of this bimodal behavior, seeking to understand to what degree the high latitudes of both hemispheres reside in distinct radiative states. Even when separated into climatologically distinct subregions, many polar regions exhibit bimodality in their longwave flux distributions not observed at lower latitudes, suggesting that the existence of these two states is both common in and unique to polar regions. Bimodality arises due to a tendency for the atmosphere to alternate between transmissive or opaque clouds, with surface longwave radiative effects of approximately 0 and 75 W m−2 (relative to clear-sky values), respectively. Clouds need not contain liquid to lead to the opaque state, as is typically assumed. The presence of solely ice clouds can cause bimodality to arise in downwelling longwave flux distributions. While some regions do not explicitly exhibit multimodal surface longwave radiation distributions, it is found that similar cloud states exist but in disproportionate frequencies.

Significance Statement

Radiation plays an important role in shaping the Arctic and Antarctic climates. Several Arctic expeditions have found that certain regions flip between having a very large energy deficit (“transmissive”) to relatively small energy deficit (“opaque”). The former allows for surface cooling and promotes the formation of ice, while the latter hinders such behavior. This study utilizes satellite observations to understand if this behavior is consistent across the Arctic and Antarctic. Understanding the frequencies of these two states is increasingly important within the context of our rapidly changing climate, and by uncovering the fundamental processes which lead to them, we may be able to model how they will change in the future.

Restricted access
Alex J. Cannon
,
Dae-Il Jeong
, and
Ka-Hing Yau

Abstract

Global warming is expected to lead to increases in atmospheric moisture and intensify sub-hourly to hourly rainfall extremes. However, signal-to-noise ratios are low, especially at the local scale, making detection of changes in the observational record difficult. For Canada, previous studies based on short data records from 1965-2005 did not show conclusive evidence of increases in short-duration extreme rainfall. This study updates single-site and regional trend analyses of 5 minute to 24 hour annual maximum rainfall in Canada using data from 1950-2021. Estimates of temporal trends are extended to also consider the association between rainfall intensity and dew point temperature, a measure of moisture availability. With longer records, evidence for increases in extreme rainfall at individual sites is stronger. Field significant increasing trends are found for the majority of durations, whereas before results were mixed and typically not statistically significant. Intensification is even more pronounced in single-site scaling of rainfall intensity with summer mean dew point temperature. Field significant positive scaling rates are detected for all durations. When data are pooled in space – irrespective of choice of regionalization – the results are even more clear. Notably, the strongest and most spatially homogeneous intensification of short-duration extreme rainfall is detected in sub-hourly to 2 hour durations. When data are pooled across Canadian climate regions, field significant positive scaling is found in 72.7% to 81.8% of regions for 5 minute to 2 hour durations, with median scaling rates ranging from 5.3 to 9.4% °C−1. For durations ≥ 6 hours, this falls to 27.3% to 53% of regions, with scaling rates less than 4% °C−1.

Restricted access
Chao Zhang
,
Shuanglin Li
, and
Zhe Han

Abstract

Among 9 La Niña events since 1980, there are 7 double-peaked La Niña events which typically persist for two years and peak twice in the two consecutive boreal winters. In the study, the individual impacts of the first and second peak episodes of such La Niña on the Antarctic sea ice in austral spring (September to November) were compared. The results suggest a difference. The first episode induces a tripolar distribution of sea ice concentration (SIC) with negative anomaly in the Bellingshausen Sea sandwiched with positive anomalies in the Ross Sea and the northeastern Weddell Sea. The second causes a SIC reduction in most parts of the Southern Ocean except for the eastern Ross-western Amundsen Seas where an increase is observed. Mechanistically, the first episode forces one single Rossby wave train propagating southeastward, causing a strong cyclone anomaly over the eastern Ross-Amundsen-Bellingshausen Seas along with a weak anticyclone over the Weddell Sea. In comparison, the second La Niña excites two branches of Rossby wave trains emanating from the southeastern tropical Indian Ocean and the central equatorial Pacific, respectively, which induce three anomalous anticyclones and two anomalous cyclones over the Southern Ocean. These different atmospheric circulation anomalies shape their different sea ice distributions between the two La Niña episodes through both dynamic and thermodynamic processes. The modeling results from CAM5 verify these differences.

Restricted access
Torben Kunz
and
Thomas Laepple

Abstract

A fundamental statistic of climate variability is its spatiotemporal correlation function. Its complex structure can be concisely summarized by a frequency-dependent measure of the effective spatial degrees of freedom (ESDOF). Here we present, for the first time, frequency-dependent ESDOF estimates of global natural surface temperature variability from purely instrumental measurements, using the HadCRUT4 dataset (1850–2014). The approach is based on a newly developed method for estimating the frequency-dependent spatial correlation function from gappy data fields. Results reveal a multicomponent structure of the spatial correlation function, including a large-amplitude short-distance component (with weak time scale dependence) and a small-amplitude long-distance component (with increasing relative amplitude toward the longer time scales). Two frequency-dependent ESDOF measures are applied, each responding mainly to either of the two components. Both measures exhibit a significant ESDOF reduction from monthly to multidecadal time scales, implying an increase of the effective spatial scale of natural surface temperature fluctuations. Moreover, it is found that a good approximation to the global number of equally spaced samples needed to estimate the variance of global mean temperature is given, at any frequency, by the greater one of the two ESDOF measures, decreasing from ∼130 at monthly to ∼30 at multidecadal time scales. Finally, the multicomponent structure of the correlation function together with the detected ESDOF scaling properties indicate that the ESDOF reduction toward the longer time scales cannot be explained simply by diffusion acting on stochastically driven anomalies, as it might be suggested from simple stochastic-diffusive energy balance models.

Open access
Emily J. Becker
and
Michael K. Tippett

Abstract

The effect of the El Niño/Southern Oscillation (ENSO) teleconnection and climate change trends on observed North American wintertime daily 2-m temperature is investigated for 1960–2022 with a quantile regression model, which represents the variability of the full distribution of daily temperature, including extremes and changes in spread. Climate change trends are included as a predictor in the regression model to avoid the potentially confounding effect on ENSO teleconnections. Based on prior evidence of asymmetric impacts from El Niño and La Niña, the ENSO response is taken to be piecewise linear, and the regression model contains separate predictors for warm and cool ENSO. The relationship between these predictors and shifts in median, interquartile range, skewness, and kurtosis of daily 2-m temperature are summarized through Legendre polynomials. Warm ENSO conditions result in significant warming shifts in the median and contraction of the interquartile range in central-northern North America, while no opposite effect is found for cool ENSO conditions in this region. In the southern U.S., cool ENSO conditions produce a warming shift in the median, while warm ENSO has little impact on the median, but contracts the interquartile range. Climate change trends are present as a near-uniform warming in the median and across quantiles and have no discernable impact on interquartile range or higher-order moments. Trends and ENSO together explain a substantial fraction of the interannual variability of daily temperature distribution shifts across much of North America and, to a lesser extent, changes of the interquartile range.

Restricted access
Zizhen Dong
,
Lin Wang
,
Ruowen Yang
, and
Jie Cao

Abstract

This study investigates the propagation and maintenance mechanisms of the dominant intraseasonal oscillation over the western North Pacific in boreal winter, the quasi-biweekly oscillation (QBWO). The wintertime QBWO over the western North Pacific is characterized by the westward-northwestward movement from the tropical western Pacific to the western North Pacific and resembles the n = 1 equatorial Rossby wave. Its westward migration is primarily driven by the seasonal-mean zonal winds that advect vorticity anomalies in the lower-middle troposphere and moisture anomalies in the lower troposphere. Its northward movement is preconditioned by the vorticity dynamics of the beta effect, the low-level vertical moisture variation, and the local air-sea interaction. The latter involves the atmospheric forcing on the underlying ocean by changing the surface heat flux fluctuations and the sea surface temperature feedback on the low-level atmospheric instability. Its maintenance is primarily through atmospheric external energy sources from diabatic heating, which first generates eddy available potential energy and then converts it to eddy kinetic energy.

Restricted access
Yujun He
,
Bin Wang
,
Juanjuan Liu
,
Yong Wang
,
Lijuan Li
,
Li Liu
,
Shiming Xu
,
Wenyu Huang
, and
Hui Lu

Abstract

Accurately predicting the decadal variations in Sahel rainfall has important implications for the lives and economy in the Sahel. Previous studies found that the decadal variations in sea surface temperature (SST) in the Atlantic, Mediterranean Sea, Indian Ocean, and Pacific contribute to those in Sahel rainfall. This study evaluates the decadal prediction skills of Sahel rainfall from all the available hindcasts contributing to phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), in comparison with the related uninitialized simulations. A majority of the prediction systems show high skill with regard to Sahel rainfall. The high skill may be partly attributed to external forcings, which are reflected in good performance of the respective uninitialized simulations. The decadal prediction skills of the key SST drivers and their relationships with the Sahel rainfall are also assessed. Both the hindcasts and the uninitialized simulations generally present high skill for the Atlantic multidecadal variability (AMV) and Mediterranean Sea SST indices and low skill for the Indian Ocean basin mode (IOBM) and interdecadal Pacific variability (IPV) indices. The relationship between the Sahel rainfall and the AMV or Mediterranean Sea SST index is reasonably captured by most prediction systems and their uninitialized simulations, while that between the Sahel rainfall and the IOBM or IPV index is captured by only a few systems and their uninitialized simulations. The high skill of the AMV and Mediterranean Sea SST indices as well as the reasonable representations of their relationships with the Sahel rainfall by both the hindcasts and uninitialized simulations probably plays an important role in predicting the Sahel rainfall successfully.

Significance Statement

Predicting Sahel rainfall on the decadal time scale is of great importance. This study provides a thorough evaluation of the decadal prediction skills of Sahel rainfall in the current decadal prediction systems participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). A majority of the systems achieve high prediction skill of Sahel rainfall, which probably results from the high prediction skill of some key sea surface temperature (SST) drivers, especially in the Atlantic and Mediterranean Sea SST, and their relationships with Sahel rainfall. This study provides a reference for better understanding the predictability of Sahel rainfall.

Restricted access
Yeon-Woo Choi
,
Muhammad Khalifa
, and
Elfatih A. B. Eltahir

Abstract

Here, we introduce the concept of “outdoor days” to describe how climate change can affect quality of life for different communities and individuals. An outdoor day is characterized by moderate temperature, neither too cold nor too hot, allowing most people to enjoy outdoor activities. The number of “outdoor days” is a non-linear function of the daily surface air temperature. If the latter falls within a specific range describing assumed thermal comfort conditions, then we assign that day as an “outdoor day”. Using this function, we describe climate change impacts on temperature differently compared to other studies which often describe these impacts in terms of the linear averaging of daily surface air temperature. The introduction of this new concept offers another way for communicating how climate change may impact the quality of life for individuals who usually plan their outdoor activities based on how local weather conditions compare to their preferred levels of thermal comfort.

Based on our analysis of regional variations in “outdoor days”, we present observational and modeling evidence of a north-south disparity in climate change impacts. Under highemission scenarios, CMIP5 and CMIP6 models project fewer “outdoor days” for people living in developing countries, primarily located in low-latitude regions. Meanwhile, developed countries in middle- and high-latitude regions could gain more “outdoor days”, redistributed across seasons.

Restricted access
Hanii Takahashi
,
Catherine M. Naud
,
Derek J. Posselt
, and
George A. Duffy

Abstract

Extratropical cyclones (ETCs) produce most of the winter precipitation at midlatitudes and are often associated with the most extreme winter weather events. For climate models to accurately predict the occurrence and severity of these extreme events in a changing climate, they need to accurately represent moist processes in general and ice processes in particular. To provide an observational constraint for model evaluation, because cloud cover and precipitation are prevalent in warm-frontal regions, a compositing method is applied to ice retrievals from satellite observations to explore the ice distribution across warm fronts in both hemispheres. Ice water path (IWP) and its variability are compared between Northern Hemisphere (NH) and Southern Hemisphere (SH) warm fronts for different ETC-wide characteristics, as well as for different ETC origination regions. Results reveal that warm-frontal IWP and its variability tend to be higher in the NH than the SH, even when controlling for the ETC strength and environmental precipitable water (PW). IWP differences between NH and SH are found to be primarily related to where the cyclones originate. As the intertropical convergence zone is shifted north, ETCs that originate close to the northern tropics have more PW than those that originate close to the southern tropics. This, in turn, seems to lead to larger IWP in NH frontal clouds than in the SH frontal clouds at a later time. This highlights the importance, for ice amounts generated in warm-frontal regions, of the environmental conditions that an ETC encounters during its genesis phase.

Significance Statement

Extratropical cyclones (ETCs) are responsible for most of the winter precipitation in the midlatitudes and are often associated with severe winter weather events. In order for climate models to accurately predict these extreme events in a changing climate, they need to correctly represent moist processes, especially those involving ice. To evaluate and improve these models, we apply a compositing method to satellite observations of ice profiles in warm-frontal regions, which are known for having high cloud cover and precipitation. This helps us understand the distribution of ice across warm fronts in both the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We compare the ice water path (IWP) and its variability between NH and SH warm fronts, considering different characteristics of ETCs and their formation regions. Our findings show that NH warm fronts generally contain more ice, and the amount varies a lot more across warm fronts than for SH warm fronts. This is true even when accounting for the strength of the cyclones and the moisture available to them. These differences in IWP between NH and SH are found to be primarily related to the locations where the cyclones originate. As the intertropical convergence zone (ITCZ) is shifted northward, ETCs originating closer to the northern tropics tend to have more moisture available to them than those originating closer to the southern tropics. This leads to greater ice amounts in NH frontal clouds compared to SH frontal clouds at a later time. These results emphasize the importance of understanding the origin of ETCs in order to accurately characterize ice processes in warm-frontal regions.

Open access
Xiaoxuan Zhao
,
Riyu Lu
,
Jianqi Sun
,
Ke Xu
, and
Chaofan Li

Abstract

The duration of cross-equatorial flow (CEF) events over the Maritime Continent (MC) varies greatly, from 3 days to more than 1 month. In this study, we classify CEF events into short- and long-lived ones using a threshold of 7 days, and conduct separate investigations on their statistical and evolution characteristics, as well as the associated physical processes from the perspective of two dominant modes of the intraseasonal oscillation. Results indicate that short-lived events, characterized by westward-propagation southerly anomalies, are largely dependent on the 10–25-day oscillation, while the contribution of the 30–60-day component is negligible. The associated enhanced convection is primarily confined to the western North Pacific (WNP) and moves northwestward, accompanied by an anomalous cyclone. In contrast, long-lived events show consistent changes among different CEF branches, characterized by southerly anomalies dominating the MC, which benefit from the favorable background of the 30–60-day oscillation. Associated convection anomalies show a dipole pattern, with enhanced convection over WNP and suppressed convection over the Indian Ocean. The enhanced WNP convection gradually migrates northward, inducing CEF anomalies via a continuous anomalous cyclone, while the suppressed convection can be found to slightly expand to the MC. Meanwhile, the 10–25-day oscillation shows similar magnitude and evolution with that in short-lived events, but is no longer crucial to the establishment of long-lived events.

Restricted access