Browse

You are looking at 81 - 90 of 2,357 items for :

  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
Cui Liu, Jianhua Sun, Xinlin Yang, Shuanglong Jin, and Shenming Fu

Abstract

Precipitation forecasts from the ECMWF model from March to September during 2015–18 were evaluated using observed precipitation at 2411 stations from the China Meteorological Administration. To eliminate the influence of varying climatology in different regions in China, the stable equitable error in probability space method was used to obtain criteria for 3- and 6-h accumulated precipitation at each station and classified precipitation into light, medium, and heavy precipitation. The model was evaluated for these categories using categorical and continuous methods. The threat score and the equitable threat score showed that the model’s forecasts of rainfall were generally more accurate at shorter lead times, and the best performance occurred in the middle and lower reaches of the Yangtze River basin. The miss ratio for heavy precipitation was higher in the northern region than in the southern region, while heavy precipitation false alarms were more frequent in southwestern China. Overall, the miss ratio and false alarm ratio for heavy precipitation were highest in northern China and western China, respectively. For light and medium precipitation, the model performed best in the middle and lower reaches of the Yangtze River basin. The model predicted too much light and medium precipitation, but too little heavy precipitation. Heavy precipitation was generally underestimated over all of China, especially in the western region of China, South China, and the Yungui Plateau. Heavy precipitation was systematically underestimated because of the resolution and the related parameterization of convection.

Restricted access
Matthew T. Bray, David D. Turner, and Gijs de Boer

Abstract

Despite a need for accurate weather forecasts for societal and economic interests in the U.S. Arctic, thorough evaluations of operational numerical weather prediction in the region have been limited. In particular, the Rapid Refresh Model (RAP), which plays a key role in short-term forecasting and decision-making, has seen very limited assessment in northern Alaska, with most evaluation efforts focused on lower latitudes. In the present study, we verify forecasts from version 4 of the RAP against radiosonde, surface meteorological, and radiative flux observations from two Arctic sites on the northern Alaskan coastline, with a focus on boundary layer thermodynamic and dynamic biases, model representation of surface inversions, and cloud characteristics. We find persistent seasonal thermodynamic biases near the surface that vary with wind direction, and may be related to the RAP’s handling of sea ice and ocean interactions. These biases seem to have diminished in the latest version of the RAP (version 5), which includes refined handling of sea ice, among other improvements. In addition, we find that despite capturing boundary layer temperature profiles well overall, the RAP struggles to consistently represent strong, shallow surface inversions. Further, while the RAP seems to forecast the presence of clouds accurately in most cases, there are errors in the simulated characteristics of these clouds, which we hypothesize may be related to the RAP’s treatment of mixed-phase clouds.

Restricted access
Matthew D. Flournoy, Michael C. Coniglio, and Erik N. Rasmussen

Abstract

Although environmental controls on bulk supercell potential and hazards have been studied extensively, relationships between environmental conditions and temporal changes to storm morphology remain less explored. These relationships are examined in this study using a compilation of sounding data collected during field campaigns from 1994 to 2019 in the vicinity of 216 supercells. Environmental parameters are calculated from the soundings and related to storm-track characteristics like initial cell motion and the time of the right turn (i.e., the time elapsed between the cell initiation and the first time when the supercell obtains a quasi-steady motion that is directed clockwise from its initial motion.). We do not find any significant associations between environmental parameters and the time of the right turn. Somewhat surprisingly, no relationship is found between storm-relative environmental helicity and the time elapsed between cell initiation and the onset of deviant motion. Initial cell motion is best approximated by the direction of the 0–6-km mean wind at two-thirds the speed. This is a result of advection and propagation in the 0–4- and 0–2-km layers, respectively. Unsurprisingly, Bunkers-right storm motion is a good estimate of post-turn motion, but storms that exhibit a post-turn motion left of Bunkers-right are less likely to be tornadic. These findings are relevant for real-time forecasting efforts in predicting the path and tornado potential of supercells up to hours in advance.

Restricted access
Seth P. Howard, Kim E. Klockow-McClain, Alison P. Boehmer, and Kevin M. Simmons

Abstract

Tornadoes cause billions of dollars in damage and over 100 fatalities on average annually. Yet, an indirect cost to these storms is found in lost sales and/or lost productivity from responding to over 2000 warnings per year. This project responds to the Weather Research and Forecasting Innovation Act of 2017, H.R. 353, which calls for the use of social and behavioral science to study and improve storm warning systems. Our goal is to provide an analysis of cost avoidance that could accrue from a change to the warning paradigm, particularly to include probabilistic hazard information at storm scales. A survey of nearly 500 firms was conducted in and near the Dallas–Fort Worth metropolitan area asking questions about experience with tornadoes, sources of information for severe weather, expected cost of responding to tornado warnings, and how the firm would respond to either deterministic or probabilistic warnings. We find a dramatic change from deterministic warnings compared to the proposed probabilistic and that a probabilistic information system produces annual cost avoidance in a range of $2.3–$7.6 billion (U.S. dollars) compared to the current deterministic warning paradigm.

Restricted access
Shu-Ya Chen, Cheng-Peng Shih, Ching-Yuang Huang, and Wen-Hsin Teng

Abstract

Conventional soundings are rather limited over the western North Pacific and can be largely compensated by GNSS radio occultation (RO) data. We utilize the GSI hybrid assimilation system to assimilate RO data and the multiresolution global model (MPAS) to investigate the RO data impact on prediction of Typhoon Nepartak that passed over southern Taiwan in 2016. In this study, the performances of assimilation with local RO refractivity and bending angle operators are compared for the assimilation analysis and typhoon forecast. Assimilations with both RO data have shown similar and comparable temperature and moisture increments after cycling assimilation and largely reduce the RMSEs of the forecast without RO data assimilation at later times. The forecast results at 60–15-km resolution show that RO data assimilation largely improves the typhoon track prediction compared to that without RO data assimilation, and assimilation with bending angle has better performances than assimilation with refractivity, in particular for wind forecast. The improvement in the forecasted track is mainly due to the improved simulation for the translation of the typhoon. Diagnostics of wavenumber-1 potential vorticity (PV) tendency budget indicates that the northwestward typhoon translation dominated by PV horizontal advection is slowed down by the southward tendency induced by the stronger differential diabatic heating south of the typhoon center for bending-angle assimilation. Simulations with the enhanced resolution of 3 km in the region of the storm track show further improvements in both typhoon track and intensity prediction with RO data assimilation. Positive RO impacts on track prediction are also illustrated for two other typhoons using the MPAS-GSI system.

Open access
Jingzhuo Wang, Jing Chen, Hanbin Zhang, Hua Tian, and Yining Shi

Abstract

Ensemble forecasting is a method to faithfully describe initial and model uncertainties in a weather forecasting system. Initial uncertainties are much more important than model uncertainties in the short-range numerical prediction. Currently, initial uncertainties are described by the ensemble transform Kalman filter (ETKF) initial perturbation method in Global and Regional Assimilation and Prediction Enhanced System–Regional Ensemble Prediction System (GRAPES-REPS). However, an initial perturbation distribution similar to the analysis error cannot be yielded in the ETKF method of the GRAPES-REPS. To improve the method, we introduce a regional rescaling factor into the ETKF method (we call it ETKF_R). We also compare the results between the ETKF and ETKF_R methods and further demonstrate how rescaling can affect the initial perturbation characteristics as well as the ensemble forecast skills. The characteristics of the initial ensemble perturbation improve after applying the ETKF_R method. For example, the initial perturbation structures become more reasonable, the perturbations are better able to explain the forecast errors at short lead times, and the lower kinetic energy spectrum as well as perturbation energy at the initial forecast times can lead to a higher growth rate of themselves. Additionally, the ensemble forecast verification results suggest that the ETKF_R method has a better spread–skill relationship, a faster ensemble spread growth rate, and a more reasonable rank histogram distribution than ETKF. Furthermore, the rescaling has only a minor impact on the assessment of the sharpness of probabilistic forecasts. The above results all suggest that ETKF_R can be effectively applied to the operational GRAPES-REPS.

Open access
Jeffrey D. Duda and David D. Turner

Abstract

The Method of Object-based Diagnostic Evaluation (MODE) is used to perform an object-based verification of approximately 1400 forecasts of composite reflectivity from the operational HRRR during April–September 2019. In this study, MODE is configured to prioritize deep, moist convective storm cells typical of those that produce severe weather across the central and eastern United States during the warm season. In particular, attributes related to distance and size are given the greatest attribute weights for computing interest in MODE. HRRR tends to overforecast all objects, but substantially overforecasts both small objects at low-reflectivity thresholds and large objects at high-reflectivity thresholds. HRRR tends to either underforecast objects in the southern and central plains or has a correct frequency bias there, whereas it overforecasts objects across the southern and eastern United States. Attribute comparisons reveal the inability of the HRRR to fully resolve convective-scale features and the impact of data assimilation and loss of skill during the initial hours of the forecasts. Scalar metrics are defined and computed based on MODE output, chiefly relying on the interest value. The object-based threat score (OTS), in particular, reveals similar performance of HRRR forecasts as does the Heidke skill score, but with differing magnitudes, suggesting value in adopting an object-based approach to forecast verification. The typical distance between centroids of objects is also analyzed and shows gradual degradation with increasing forecast length.

Restricted access
Xu Zhang, Yuhua Yang, Baode Chen, and Wei Huang

Abstract

The quantitative precipitation forecast in the 9-km operational modeling system (without the use of a convection parameterization scheme) at the Shanghai Meteorological Service (SMS) usually suffers from excessive precipitation at the grid scale and less-structured precipitation patterns. Two scale-aware convection parameterizations were tested in the operational system to mitigate these deficiencies. Their impacts on the warm-season precipitation forecast over China were analyzed in case studies and two-month retrospective forecasts. The results from case studies show that the importance of convection parameterization depends on geographical regions and weather regimes. Considering a proper magnitude of parameterized convection can produce more realistic precipitation distribution and reduce excessive gridscale precipitation in southern China. In northeast and southwest China, however, the convection parameterization plays an insignificant role in precipitation forecast because of strong synoptic-scale forcing. A statistical evaluation of the two-month retrospective forecasts indicates that the forecast skill for precipitation in the 9-km operational system is improved by choosing proper convection parameterization. This study suggests that improvement in contemporary convection parameterizations is needed for their usage for various meteorological conditions and reasonable partitioning between parameterized and resolved convection.

Restricted access
Evan A. Kalina, Isidora Jankov, Trevor Alcott, Joseph Olson, Jeffrey Beck, Judith Berner, David Dowell, and Curtis Alexander

Abstract

The High-Resolution Rapid Refresh Ensemble (HRRRE) is a 36-member ensemble analysis system with 9 forecast members that utilizes the Advanced Research version of the Weather Research and Forecasting (ARW-WRF) dynamic core and the physics suite from the operational Rapid Refresh/High-Resolution Rapid Refresh deterministic modeling system. A goal of HRRRE development is a system with sufficient spread among members, comparable in magnitude to the random error in the ensemble mean, to represent the range of possible future atmospheric states. HRRRE member diversity has traditionally been obtained by perturbing the initial and lateral boundary conditions of each member, but recent development has focused on implementing stochastic approaches in HRRRE to generate additional spread. These techniques were tested in retrospective experiments and in the May 2019 Hazardous Weather Testbed Spring Experiment (HWT-SE). Results show a 6%–25% increase in the ensemble spread in 2-m temperature, 2-m mixing ratio, and 10-m wind speed when stochastic parameter perturbations are used in HRRRE (HRRRE-SPP). Case studies from HWT-SE demonstrate that HRRRE-SPP performed similar to or better than the operational High-Resolution Ensemble Forecast system, version 2 (HREFv2), and the nonstochastic HRRRE. However, subjective evaluations provided by HWT-SE forecasters indicated that overall, HRRRE-SPP predicted lower probabilities of severe weather (using updraft helicity as a proxy) compared to HREFv2. A statistical analysis of the performance of HRRRE-SPP and HREFv2 from the 2019 summer convective season supports this claim, but also demonstrates that the two systems have similar reliability for prediction of severe weather using updraft helicity.

Open access
Valerio Capecchi

Abstract

We investigate the potential added value of running three limited-area ensemble systems (with the WRF, Meso-NH, and MOLOCH models and a grid spacing of approximately 2.5 km) for two heavy-precipitation events in Italy. Such high-resolution ensembles include an explicit treatment of convective processes and dynamically downscale the ECMWF global ensemble predictions, which have a grid spacing of approximately 18 km. The predictions are verified against rain gauge data, and their accuracy is evaluated over that of the driving coarser-resolution ensemble system. Furthermore, we compare the simulation speed (defined as the ratio of simulation length to wall-clock time) of the three limited-area models to estimate the computational effort for operational convection-permitting ensemble forecasting. We also study how the simulation wall-clock time scales with increasing numbers of computing elements (from 36 to 1152 cores). Objective verification methods generally show that convection-permitting forecasts outperform global forecasts for both events, although precipitation peaks remain largely underestimated for one of the two events. Comparing simulation speeds, the MOLOCH model is the fastest and the Meso-NH is the slowest one. The WRF Model attains efficient scalability, whereas it is limited for the Meso-NH and MOLOCH models when using more than 288 cores. We finally demonstrate how the model simulation speed has the largest impact on a joint evaluation with the model performance because the accuracy of the three limited-area ensembles, amplifying the forecasting capability of the global predictions, does not differ substantially.

Restricted access