Browse

You are looking at 1 - 10 of 10 items for :

  • Journal of Atmospheric and Oceanic Technology x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: All Content x
Clear All
Liang Liao and Robert Meneghini

Abstract

A physical evaluation of the rain profiling retrieval algorithms for the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory satellite is carried out by applying them to the hydrometeor profiles generated from measured raindrop size distributions (DSD). The DSD-simulated radar profiles are used as input to the algorithms, and their estimates of hydrometeors’ parameters are compared with the same quantities derived directly from the DSD data (or truth). The retrieval accuracy is assessed by the degree to which the estimates agree with the truth. To check the validity and robustness of the retrievals, the profiles are constructed for cases ranging from fully correlated (or uniform) to totally uncorrelated DSDs along the columns. Investigation into the sensitivity of the retrieval results to the model assumptions is made to characterize retrieval uncertainties and identify error sources. Comparisons between the single- and dual-wavelength algorithm performance are carried out with either a single- or dual-wavelength constraint of the path integral or differential path integral attenuation. The results suggest that the DPR dual-wavelength algorithm generally provides accurate range-profiled estimates of rainfall rate and mass-weighted diameter with the dual-wavelength estimates superior in accuracy to those from the single-wavelength retrievals.

Full access
Minda Le and V. Chandrasekar

Abstract

Extensive evaluations have been performed on the dual-frequency classification module in the Global Precipitation Mission (GPM) Dual-Frequency Precipitation Radar (DPR) level-2 algorithm. Both rain type classification and melting-layer detection continue to show promising results in the validations. Surface snowfall identification is a feature newly added in the classification module to the recently released version to provide a surface snowfall flag for each qualified vertical profile. This algorithm is developed upon vertical features of Ku- and Ka-band reflectivity and dual-frequency ratio from DPR. In this paper, we validate this surface snowfall identification algorithm with ground radars including NEXRAD, NASA Polarimetric Radar (NPOL), and CSU–CHILL radar during concurrent precipitation events and GPM validation campaign Olympic Mountain Experiment (OLYMPEX). Other ground truth such as Precipitation Imaging Package (PIP) and ground report is also included in the validation. Based on 16 validation cases in the years 2014–18, the average match ratio between surface snowfall flag from space radar and ground radar is around 87.8%. Promising agreements are achieved with different validation sources. Algorithm limitation and potential improvement are discussed.

Full access
Clément Guilloteau, Efi Foufoula-Georgiou, Christian D. Kummerow, and Veljko Petković

Abstract

The scattering of microwaves at frequencies between 50 and 200 GHz by ice particles in the atmosphere is an essential element in the retrieval of instantaneous surface precipitation from spaceborne passive radiometers. This paper explores how the variable distribution of solid and liquid hydrometeors in the atmospheric column over land surfaces affects the brightness temperature (TB) measured by GMI at 89 GHz through the analysis of Dual-Frequency Precipitation Radar (DPR) reflectivity profiles along the 89-GHz beam. The objective is to refine the statistical relations between observed TBs and surface precipitation over land and to define their limits. As GMI is scanning with a 53° Earth incident angle, the observed atmospheric volume is actually not a vertical column, which may lead to very heterogeneous and seemingly inconsistent distributions of the hydrometeors inside the beam. It is found that the 89-GHz TB is mostly sensitive to the presence of ice hydrometeors several kilometers above the 0°C isotherm, up to 10 km above the 0°C isotherm for the deepest convective systems, but is a modest predictor of the surface precipitation rate. To perform a precise mapping of atmospheric ice, the altitude of the individual ice clusters must be known. Indeed, if variations in the altitude of ice are not accounted for, then the high incident angle of GMI causes a horizontal shift (parallax shift) between the estimated position of the ice clusters and their actual position. We show here that the altitude of ice clusters can be derived from the 89-GHz TB itself, allowing for correction of the parallax shift.

Open access
Stephanie M. Wingo, Walter A. Petersen, Patrick N. Gatlin, Charanjit S. Pabla, David A. Marks, and David B. Wolff

Abstract

Researchers now have the benefit of an unprecedented suite of space- and ground-based sensors that provide multidimensional and multiparameter precipitation information. Motivated by NASA’s Global Precipitation Measurement (GPM) mission and ground validation objectives, the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) has been developed as a unique multisensor precipitation data fusion tool to unify field observations recorded in a variety of formats and coordinate systems into a common reference frame. Through platform-specific modules, SIMBA processes data from native coordinates and resolutions only to the extent required to set them into a user-defined three-dimensional grid. At present, the system supports several ground-based scanning research radars, NWS NEXRAD radars, profiling Micro Rain Radars (MRRs), multiple disdrometers and rain gauges, soundings, the GPM Microwave Imager and Dual-Frequency Precipitation Radar on board the Core Observatory satellite, and Multi-Radar Multi-Sensor system quantitative precipitation estimates. SIMBA generates a new atmospheric column data product that contains a concomitant set of all available data from the supported platforms within the user-specified grid defining the column area in the versatile netCDF format. Key parameters for each data source are preserved as attributes. SIMBA provides a streamlined framework for initial research tasks, facilitating more efficient precipitation science. We demonstrate the utility of SIMBA for investigations, such as assessing spatial precipitation variability at subpixel scales and appraising satellite sensor algorithm representation of vertical precipitation structure for GPM Core Observatory overpass cases collected in the NASA Wallops Precipitation Science Research Facility and the GPM Olympic Mountain Experiment (OLYMPEX) ground validation field campaign in Washington State.

Full access
Rachael Kroodsma, Stephen Bilanow, and Darren McKague

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) has been updated to a final version following the decommissioning of the TRMM satellite in April 2015. The updates are based on increased knowledge of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI updates. This paper discusses two aspects of the TMI data product that have been reanalyzed and updated: alignment and along-scan bias corrections. The TMI’s pointing accuracy is significantly improved over prior PPS versions, which used at-launch alignment values. A TMI instrument mounting offset is discovered as well as new alignment offsets for the two TMI feedhorns. The original TMI along-scan antenna temperature bias correction is found to be generally accurate over ocean, but a scene temperature-dependent correction is needed to account for edge-of-scan obstruction. These updates are incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI.

Full access
E. F. Stocker, F. Alquaied, S. Bilanow, Y. Ji, and L. Jones

Abstract

The National Aeronautics and Space Administration (NASA) has always included data reprocessing as a major component of every science mission. A final reprocessing is typically a part of mission closeout (known as phase F). The Tropical Rainfall Measuring Mission (TRMM) is currently in phase F, and NASA is preparing for the last reprocessing of all the TRMM precipitation data as part of the closeout. This reprocessing includes improvements in calibration of both the TRMM Microwave Imager (TMI) and the TRMM Precipitation Radar (PR). An initial step in the version 8 reprocessing is the improvement of geolocation. The PR calibration is being updated by the Japan Aerospace Exploration Agency (JAXA) using data collected as part of the calibration of the Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory. JAXA undertook a major effort to ensure TRMM PR and GPM Ku-band calibration is consistent.

A major component of the TRMM version 8 reprocessing is to create consistent retrievals with the GPM version 05 (V05) retrievals. To this end, the TRMM version 8 reprocessing uses retrieval algorithms based on the GPM V05 algorithms. This approach ensures consistent retrievals from December 1997 (the beginning of TRMM) through the current ongoing GPM retrievals. An outcome of this reprocessing is the incorporation of TRMM data products into the GPM data suite. Incorporation also means that GPM file naming conventions and reprocessed TRMM data carry the V05 data product version. This paper describes the TRMM version 8 reprocessing, focusing on the improvements in TMI level 1 products.

Full access
Lijing Cheng, Hao Luo, Timothy Boyer, Rebecca Cowley, John Abraham, Viktor Gouretski, Franco Reseghetti, and Jiang Zhu

Abstract

Biases have been identified in historical expendable bathythermograph (XBT) datasets, which are one of the major sources of uncertainty in the ocean subsurface database. More than 10 correction schemes were proposed; however, their performance has not been collectively evaluated and compared. This study quantifies how well 10 different available schemes can correct the historical XBT data by comparing the corrected XBT data with collocated reference data in both the World Ocean Database (WOD) 2013 and the EN4 dataset. Four different metrics are proposed to quantify their performances. The results indicate CH14 is the best among the currently available methods, and L09/G12/GR10 can be used with some caveats. To test the robustness of the schemes, we further train the CH14 and L09 by using 50% of the XBT–reference data and the schemes are tested by using the remaining data. The results indicate that the two schemes are robust. Moreover, the EN4 and WOD comparison datasets show a systematic difference of XBT error (~0.01°C on a global scale and 0–700 m on average). influences of quality control and data processing have been investigated. Additionally, the side-by-side XBT–CTD comparison experiment is used to examine the correction schemes and provides independent high-quality data for the assessment. The schemes that best correct the global datasets do not always perform as well at correcting the side-by-side dataset, and further examination of the discrepancy in performance is still required. Finally, CH14 and L09 result in very similar ocean heat content (OHC) change estimates in the upper 700 m since 1966, suggesting the potential of reducing XBT-induced error in OHC estimates.

Open access
Toshio Iguchi, Nozomi Kawamoto, and Riko Oki

Abstract

Detection of ice precipitation is one of the objectives in the Global Precipitation Measurement (GPM) mission. The dual-frequency precipitation radar (DPR) can provide precipitation echoes at two different frequencies, which may enable differentiating solid precipitation echoes from liquid precipitation echoes. A simple algorithm that flags the pixels that contain intense ice precipitation above the height of C is implemented in version 5 of the DPR products. In the inner swath of DPR measurements in which both Ku- and Ka-band radar echoes are available, the measured dual-frequency ratio () together with the measured radar reflectivity factor is used to judge the existence of intense ice precipitation. Comparisons of the flagged pixels with surface measurements show that the algorithm correctly identifies relatively intense ice precipitation regions. The global distribution of the flagged pixels indicates an interesting difference between land and ocean, in particular in the distribution of ice precipitation that reaches the surface. The flag is also expected to be useful for improving precipitation retrieval algorithms by microwave radiometers.

Open access
H. Dong and X. Zou

Abstract

The Global Precipitation Measurement (GPM) Microwave Imager (GMI) plays an important role in monitoring global precipitation. In this study, an along-track striping noise is found in GMI observations of brightness temperatures for the two highest-frequency channels—12 and 13—with their central frequencies centered at 183.31 GHz. These two channels are designed for sounding the water vapor in the middle and upper troposphere. The pitch maneuver data of deep space confirmed an existence of striping noise in channels 12 and 13. A striping noise mitigation method is used for extracting the striping noise from the earth scene or deep space measurements of brightness temperatures by combining the principle component analysis (PCA) with the ensemble empirical mode decomposition (EEMD) method. A power spectrum density analysis indicated that the frequency of striping noise ranges between 0.06 and 0.533 s−1, where the right bound of 0.533 s−1 of frequency is exactly the inverse of the time (i.e., 1.875 s) it takes for the GMI to complete one conical scan line. The magnitude of striping noise in the brightness temperature observations of GMI channels 12 and 13 is about ±0.3 K. It is shown that after striping noise mitigation, the observation minus model simulation (O − B) distributions of both the earth scene and deep space brightness temperatures show no visible striping features.

Full access
Wesley Berg, Stephen Bilanow, Ruiyao Chen, Saswati Datta, David Draper, Hamideh Ebrahimi, Spencer Farrar, W. Linwood Jones, Rachael Kroodsma, Darren McKague, Vivienne Payne, James Wang, Thomas Wilheit, and John Xun Yang

Abstract

The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).

Full access