Browse

You are looking at 1 - 10 of 10,942 items for :

  • Journal of Climate x
  • Refine by Access: All Content x
Clear All
Xueheng Shi, Claudie Beaulieu, Rebecca Killick, and Robert Lund

Abstract

This paper presents a statistical analysis of structural changes in the Central England temperature series, one of the longest surface temperature records available. A changepoint analysis is performed to detect abrupt changes, which can be regarded as a preliminary step before further analysis is conducted to identify the causes of the changes (e.g., artificial, human-induced, or natural variability). Regression models with structural breaks, including mean and trend shifts, are fitted to the series and compared via two commonly used multiple changepoint penalized likelihood criteria that balance model fit quality (as measured by likelihood) against parsimony considerations. Our changepoint model fits, with independent and short-memory errors, are also compared with a different class of models termed long-memory models that have been previously used by other authors to describe persistence features in temperature series. In the end, the optimal model is judged to be one containing a changepoint in the late 1980s, with a transition to an intensified warming regime. This timing and warming conclusion is consistent across changepoint models compared in this analysis. The variability of the series is not found to be significantly changing, and shift features are judged to be more plausible than either short- or long-memory autocorrelations. The final proposed model is one including trend shifts (both intercept and slope parameters) with independent errors. The analysis serves as a walk-through tutorial of different changepoint techniques, illustrating what can be statistically inferred.

Open access
L. van Schalkwyk, R. C. Blamey, L. L. Dyson, and C. J. C. Reason

Abstract

A climatology of synoptic drylines on the subtropical southern African interior plateau (SAP) is developed using ERA5 reanalysis specific humidity and surface temperature gradients and an objective detection algorithm. Drylines are found to occur regularly during spring and summer (September–March), and almost daily during December of that period, but rarely in winter. A westward shift in peak dryline frequency takes place through the summer. Drylines peak first over the eastern parts of the SAP during November with a mean of 10 drylines and then over the central (mean of 12) and western SAP (mean of 20) in December. During midsummer, drylines over the eastern SAP are negatively correlated with drylines in the west. Between 1980 and 2020, a significant correlation exists between ENSO and dryline days over the eastern (r = 0.44; p value = 0.004) and central (r = 0.41; p value = 0.008) SAP with fewer drylines (up to 10) occurring during years with increased surface moisture and more drylines (up to 45) occurring during years with decreased surface moisture. Drylines forming over the eastern parts of the SAP were more likely to move westward than drylines over the central and western parts. Onset times across the SAP show that drylines have a tendency to form during either the late morning to early afternoon (1100 and 1400 LST) or during the early evening hours (1700 and 2000 LST), suggesting that the surface heat trough (Kalahari heat low) and westward moisture transport mechanisms, such as the Limpopo low-level jet and ridging highs, are responsible for the formation of most drylines across the SAP.

Significance Statement

“Drylines” are used to describe boundaries separating regions of very dry air from those with much higher moisture content. The importance of these drylines is that they tend to act as a trigger for thunderstorms, which can produce severe weather. In this study, we build a long-term climatological description of drylines in subtropical southern Africa. We find that drylines are most frequent over eastern South Africa during the early summer, a time when storms with large hail and damaging winds are most likely to occur. Drylines are sensitive to moisture circulation patterns and respond differently during El Niño and La Niña years, with generally more drylines during El Niño over eastern South Africa and fewer during La Niña.

Restricted access
Peihao Zhou and Xiuzhen Li

Abstract

The meridional displacement of the western North Pacific subtropical high (WNPSH) on an intraseasonal time scale is investigated, with emphasis on differences between early (May–June) and late (July–August) summer. The intraseasonal variation (ISV) of the meridional displacement of the WNPSH is dominated by the 10–30-day period, and the variation amplitude is larger in late summer. The ISV of the WNPSH is attributed mainly to the evolution of an anomalous cyclone/anticyclone north of the WNPSH in early summer, whereas it is due to a south-to-north dipole of an anomalous anticyclone and cyclone over East Asia in late summer. Moreover, the WNPSH tends to shift westward when it moves northward, and vice versa, especially in early summer. Both tropical convection and mid- to high-latitude teleconnection across Eurasia are responsible for the ISV of the meridional displacement of the WNPSH in early and late summer. The role of mid- to high-latitude teleconnection is more important in early summer, whereas tropical convection over the South China Sea is more crucial in late summer, through triggering a Pacific–Japan (PJ) pattern. In early summer, as the WNPSH shifts northward, rainfall increases over the Yangtze River valley and decreases over Southeast China, and vice versa. In late summer, deficient rainfall over North China persists when the WNPSH is at its southernmost location and during its northward shift, and vice versa. The characteristics, underlying processes, and impacts of the 10–30-day meridional displacement of the WNPSH are significantly different in early and late summer.

Restricted access
Kexin Song, Jiuwei Zhao, Ruifen Zhan, Li Tao, and Lin Chen

Abstract

Confidence and uncertainty issues of simulations were seldom evaluated in previous studies although the climate models are widely used. This study evaluates the performance of the CMIP6-HighResMIP simulations in presenting long-term variability of tropical cyclone (TC) genesis frequency (TCGF) and track density (TCTD) and quantifies the relative contributions of internal and external forcing to TC activities during the 1950–2014. There is overall poor model performance in simulating long-term changes in TC activities over the Northern Hemisphere, including interdecadal variabilities and long-term linear trends. The simulated long-term changes in TCGF and TCTD over the eastern North Pacific (ENP) in six high-resolution models show opposite characteristics to the observations. Moreover, most models cannot capture the variabilities of TCGF and TCTD over the western part of the western North Pacific (WNP) and northern part of the North Atlantic (NA). However, these models show a high degree of confidence in reproducing the interdecadal variabilities and linear trends of TCGF and TCTD over the eastern part of the WNP and the tropical NA. Quantitative evaluations further show that there are the opposite relative contributions of long-term climate variabilities to TCGF and TCTD changes over the ENP between the observations and the multimodel ensemble mean, followed by large model biases over the western WNP and the northern NA, but relatively consistent contributions over the southern NA and the Caribbean. These results help us cope with contrasting and consistent future TC changes among the model projections.

Significance Statement

While climate models have been widely used to project future changes in tropical cyclone (TC) activity, few studies have examined to what extent we can trust these model projections. We used the CMIP6-HighResMIP simulations to quantify the model biases in presenting TC activity, and evaluate the relative contributions of internal and external forcing to TC activities. In general, the HighResMIP has large discrepancies in representing longer-term climate variability of TC activity. However, the models can capture well TC activity over the eastern part of the western North Pacific and tropical Atlantic, which is attributed to good performance of models in reproducing the relationship between long-term climate variabilities beyond interannual scale and TC activity. These results highlight confidence and uncertainty in future TC changes among the model projections.

Open access
Dong Wan Kim and Sukyoung Lee

Abstract

This study investigates the mechanism behind the recent boreal summer circulation trend pattern and associated high surface temperature anomalies over the Russian Far East. This circulation pattern includes a prominent anticyclone over the Kamchatka Peninsula where heat extremes have been trending upward. Observational analysis and numerical model simulations indicate that latent heating anomalies centered over Yakutia, west of Kamchatka Peninsula, can excite this anticyclone and the downstream circulation trend pattern. However, this anticyclone alone is insufficient for generating the anomalously high temperature over the region. Instead, the high temperature emerges when there is an upstream precursor that resembles the Eurasian circulation trend pattern. Warm advection by this upstream circulation initiates a positive temperature anomaly over the Russian Far East, one week prior to the onset of the anticyclone in this region. As this anticyclone develops, the temperature anomalies further intensify by adiabatic warming and shortwave radiative heating. If upstream circulation anomalies are opposite to those of the Eurasian trend pattern, the initial temperature over the Russian Far East is anomalously negative. As a result, the adiabatic warming and shortwave radiative heating within this anticyclonic region are unable to bring the temperature to an extreme condition. These findings indicate that the temperature extremes over the Russian Far East are contributed by a combination of remote and local circulation forcings and provide insights into subseasonal forecasts of heat waves over this region.

Restricted access
Annu Panwar and Axel Kleidon

Abstract

The diurnal variations of surface and air temperature are closely related, but their different responses to evaporative conditions can inform us about land–atmosphere interactions. Here, we evaluate the responses of the diurnal ranges in surface (ΔTs) and air (ΔTa) temperature to evaporative fraction at 160 FLUXNET sites and in the ERA5 reanalysis. We show that the sensitivity of ΔTs to evaporative fraction depends on vegetation type, whereas ΔTa does not. On days with low evaporative fraction, ΔTs in FLUXNET is enhanced by up to ∼20 K (∼30 K in ERA5) in short vegetation, but only by up to ∼10 K (∼10 K in ERA5) in forests. Note that ΔTa responds rather similarly to evaporative fraction irrespective of vegetation type (∼5 K in FLUXNET, ∼10 K in ERA5). We find a systematic bias in ERA5’s ΔT response to evaporative conditions, showing a stronger sensitivity to evaporative fraction than in FLUXNET. We then demonstrate with a simple atmospheric boundary layer (SABL) model that the weak response of ΔTa to evaporative fraction can be explained by greater boundary layer growth under dry conditions, which increases the heat storage capacity and reduces the response of air temperature to evaporative fraction. Additionally, using a simplified surface energy balance (SSEB) model we show that ΔTs mainly responds to solar radiation, evaporative fraction, and aerodynamic conductance. We conclude that the dominant patterns of diurnal temperature variations can be explained by fundamental physical concepts, which should help us to better understand the main controls of land–atmosphere interactions.

Significance Statement

Generally, air temperature is used more widely than the surface temperature, and often they are assumed to be equivalent. However, we show that their responses to changes in vegetation type and evaporative conditions are quite different. Using FLUXNET observations, ERA5 reanalysis, and two simple physical models, we found that these responses are much stronger in surface temperature, especially in short vegetation, and relatively weaker in air temperature. Despite being measured just 2 m above the surface, air temperature carries lesser imprints of evaporation and vegetation than the surface temperature because of boundary layer dynamics. These findings suggest the importance of coupled land–atmosphere processes in shaping surface and air temperature differently and provide insights on their distinctive responses to global changes.

Open access
Todd Emmenegger, Yi-Hung Kuo, Shaocheng Xie, Chengzhu Zhang, Cheng Tao, and J. David Neelin

Abstract

A set of diagnostics based on simple, statistical relationships between precipitation and the thermodynamic environment in observations is implemented to assess phase 6 of the Coupled Model Intercomparison Project (CMIP6) model behavior with respect to precipitation. Observational data from the Atmospheric Radiation Measurement (ARM) permanent field observational sites are augmented with satellite observations of precipitation and temperature as an observational baseline. A robust relationship across observational datasets between column water vapor (CWV) and precipitation, in which conditionally averaged precipitation exhibits a sharp pickup at some critical CWV value, provides a useful convective onset diagnostic for climate model comparison. While a few models reproduce an appropriate precipitation pickup, most models begin their pickup at too low CWV and the increase in precipitation with increasing CWV is too weak. Convective transition statistics compiled in column relative humidity (CRH) partially compensate for model temperature biases—although imperfectly since the temperature dependence is more complex than that of column saturation. Significant errors remain in individual models and weak pickups are generally not improved. The conditional-average precipitation as a function of CRH can be decomposed into the product of the probability of raining and mean precipitation during raining times (conditional intensity). The pickup behavior is primarily dependent on the probability of raining near the transition and on the conditional intensity at higher CRH. Most models roughly capture the CRH dependence of these two factors. However, compensating biases often occur: model conditional intensity that is too low at a given CRH is compensated in part by excessive probability of precipitation.

Open access
Alice Portal, Claudia Pasquero, Fabio D’Andrea, Paolo Davini, Mostafa E. Hamouda, and Gwendal Rivière

Abstract

Even though winter land–sea thermal contrast (LSC) is expected to undergo a strong weakening in the future warmer climate, its effects have been poorly investigated. Here we run a set of idealized winter simulations featuring reduced LSC in the Northern Hemisphere (NH) extratropics, or in individual extratropical sectors of the NH (Atlantic and Pacific), using an intermediate-complexity atmospheric general circulation model. Reduced LSC is obtained by imposing a warming of surface land temperatures in East Asia and North America. For similar warming intensities over the two regions, the response of the model to East Asia forcing is significantly stronger and dominates the response to the sum of the two forcing patterns. We find that the LSC reduction causes a weakening and poleward shift of the midlatitude jet streams, and a strong interference with zonal wavenumbers 1 and 2. In particular, East Asian warming reduces the amplitude of waves 1 and 2, producing a strengthening of the stratospheric vortex, while a weaker vortex due to a moderate amplification of wave 1 is detected when warming North America. Eventually, stratospheric signals propagate downward in the troposphere affecting the midlatitude winter NH even remotely from the forcing. In this work we pinpoint some mechanisms by which weakened winter LSC influences the NH extratropical circulation: the results may become useful to interpret the response to long-term projections displaying reduced LSC along with other climate change forcing patterns.

Open access
Hilla Afargan-Gerstman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen

Abstract

Roughly two-thirds of the observed sudden stratospheric warming (SSW) events are followed by an equatorward shift of the tropospheric jet in the North Atlantic, while the other events generally show a poleward shift. It is however not resolved which drivers lead to the large inter-event variability in the surface impact. Using an intermediate complexity atmospheric model, we analyze the contribution of different factors to the downward response: polar cap geopotential height anomalies in the lower stratosphere, downstream influence from the northeastern Pacific, and local tropospheric conditions in the North Atlantic at the time of the initial response. As in reanalysis, an equatorward shift of the North Atlantic jet is found to occur for two-thirds of SSWs in the model. We find that around 40% of the variance of the tropospheric jet response after SSW events can be explained by the lower stratosphere geopotential height anomalies, while around 25% can be explained by zonal wind anomalies over the northeastern Pacific region. Local Atlantic conditions at the time of the SSW onset are also found to contribute to the surface response. To isolate the role of the stratosphere from tropospheric variability, we use model experiments where the zonal mean stratospheric winds are nudged toward climatology. When stratospheric variability is suppressed, the Pacific influence is found to be weaker. These findings shed light on the contribution of the stratosphere to the diverse downward impacts of SSW events, and may help to improve the predictability of tropospheric jet variability in the North Atlantic.

Restricted access
Aseem R. Sharma, Piyush Jain, John T. Abatzoglou, and Mike Flannigan

Abstract

During summer, persistent positive anomalies (PPAs) of midtropospheric geopotential heights in North America are often associated with extreme weather, including heatwaves. We evaluate the link between prolonged summertime PPAs in 500-hPa geopotential heights and wildfire activity across western North America and examine temporal trends in PPA characteristics. On average, 17% of May–September days experience PPA events over the study domain. Large fires (burned area > 500 ha) were 7 times as likely to start during a PPA, with approximately 40% of these fires’ ignitions coincident with PPA events. A positive correlation exists between the fraction of May–September PPA days and burned area for most of the study domain. Additionally, the presence of a PPA exerts greater influence on fire ignition and burned area in higher latitudes than lower latitudes of western North America. We find a statistically significant expansion in the spatial extent of PPA events during 1979–2020. The observed expansion of the PPAs is likely due to thermodynamic changes in midlatitude synoptic patterns. These findings may improve our understanding of the connections between PPA events and wildfires in western North America, enhance the short-term predictability of wildfire events, and have important implications for increased fire risk in a warming climate.

Significance Statement

Persistent positive anomalies (PPAs) of the upper air atmospheric flow, a slow progression of planetary waves, are synoptic-scale patterns that cause heatwaves and contribute to wildfire activity. We seek to understand how these events relate to fire weather and fire activity over western North America. The presence of PPA events increases the likelihood of fire ignition by a factor of 7, with higher likelihood over northern regions. The mean area of the PPA events has grown significantly in recent decades, exposing larger areas and populations to increased fire risks. These results improve our understanding of the connections between upper air atmospheric patterns and wildfires, signal how it may change in future warmer climate and scenarios, and enhance the near-future predictability of fire events in this region.

Open access