Browse

You are looking at 1 - 3 of 3 items for :

  • 12th International Precipitation Conference (IPC12) x
  • Journal of Hydrometeorology x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: All Content x
Clear All
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

Open access
Andrea Camplani
,
Daniele Casella
,
Paolo Sanò
, and
Giulia Panegrossi

Abstract

This paper describes a new Passive Microwave Empirical Cold Surface Classification Algorithm (PESCA) developed for snow-cover detection and characterization by using passive microwave satellite measurements. The main goal of PESCA is to support the retrieval of falling snow, since several studies have highlighted the influence of snow-cover radiative properties on the falling-snow passive microwave signature. The developed method is based on the exploitation of the lower-frequency channels (<90 GHz), common to most microwave radiometers. The method applied to the conically scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the cross-track-scanning Advanced Technology Microwave Sounder (ATMS) is described in this paper. PESCA is based on a decision tree developed using an empirical method and verified using the AutoSnow product built from satellite measurements. The algorithm performance appears to be robust both for sensors in dry conditions (total precipitable water < 10 mm) and for mean surface elevation < 2500 m, independent of the cloud cover. The algorithm shows very good performance for cold temperatures (2-m temperature below 270 K) with a rapid decrease of the detection capabilities between 270 and 280 K, where 280 K is assumed as the maximum temperature limit for PESCA (overall detection statistics: probability of detection is 0.98 for ATMS and 0.92 for GMI, false alarm ratio is 0.01 for ATMS and 0.08 for GMI, and Heidke skill score is 0.72 for ATMS and 0.69 for GMI). Some inconsistencies found between the snow categories identified with the two radiometers are related to their different viewing geometries, spatial resolution, and temporal sampling. The spectral signatures of the different snow classes also appear to be different at high frequency (>90 GHz), indicating potential impact for snowfall retrieval. This method can be applied to other conically scanning and cross-track-scanning radiometers, including the future operational EUMETSAT Polar System Second Generation (EPS-SG) mission microwave radiometers.

Open access