Browse

You are looking at 1 - 6 of 6 items for :

  • Multi-Scale Dynamics of Gravity Waves (MS-GWaves) x
  • DEEPWAVE: The Deep Propagating Gravity Wave Experiment x
  • Refine by Access: All Content x
Clear All
Andreas Dörnbrack
,
Stephen D. Eckermann
,
Bifford P. Williams
, and
Julie Haggerty

Abstract

Stratospheric gravity waves observed during the DEEPWAVE research flight RF25 over the Southern Ocean are analyzed and compared with numerical weather prediction (NWP) model results. The quantitative agreement of the NWP model output and the tropospheric and lower-stratospheric observations is remarkable. The high-resolution NWP models are even able to reproduce qualitatively the observed upper-stratospheric gravity waves detected by an airborne Rayleigh lidar. The usage of high-resolution ERA5 data—partially capturing the long internal gravity waves—enabled a thorough interpretation of the particular event. Here, the observed and modeled gravity waves are excited by the stratospheric flow past a deep tropopause depression belonging to an eastward-propagating Rossby wave train. In the reference frame of the propagating Rossby wave, vertically propagating hydrostatic gravity waves appear stationary; in reality, of course, they are transient and propagate horizontally at the phase speed of the Rossby wave. The subsequent refraction of these transient gravity waves into the polar night jet explains their observed and modeled patchy stratospheric occurrence near 60°S. The combination of both unique airborne observations and high-resolution NWP output provides evidence for the one case investigated in this paper. As the excitation of such gravity waves persists during the quasi-linear propagation phase of the Rossby wave’s life cycle, a hypothesis is formulated that parts of the stratospheric gravity wave belt over the Southern Ocean might be generated by such Rossby wave trains propagating along the midlatitude waveguide.

Open access
Tyler Mixa
,
Andreas Dörnbrack
, and
Markus Rapp

Abstract

Horizontally dispersing gravity waves with horizontal wavelengths of 30–40 km were observed at mesospheric altitudes over Auckland Island by the airborne advanced mesospheric temperature mapper during a Deep Propagating Gravity Wave Experiment (DEEPWAVE) research flight on 14 July 2014. A 3D nonlinear compressible model is used to determine which propagation conditions enabled gravity wave penetration into the mesosphere and how the resulting instability characteristics led to widespread momentum deposition. Results indicate that linear tunneling through the polar night jet enabled quick gravity wave propagation from the surface up to the mesopause, while subsequent instability processes reveal large rolls that formed in the negative shear above the jet maximum and led to significant momentum deposition as they descended. This study suggests that gravity wave tunneling is a viable source for this case and other deep propagation events reaching the mesosphere and lower thermosphere.

Open access
Tanja C. Portele
,
Andreas Dörnbrack
,
Johannes S. Wagner
,
Sonja Gisinger
,
Benedikt Ehard
,
Pierre-Dominique Pautet
, and
Markus Rapp

Abstract

The impact of transient tropospheric forcing on the deep vertical mountain-wave propagation is investigated by a unique combination of in situ and remote sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a shape and was controlled by a migrating trough and connected fronts. Our case study reveals the importance of the time-varying propagation conditions in the upper troposphere and lower stratosphere (UTLS). Upper-tropospheric stability, the wind profile, and the tropopause strength affected the observed and simulated wave response in the UTLS. Leg-integrated along-track momentum fluxes () and amplitudes of vertical displacements of air parcels in the UTLS reached up to 130 kN m−1 and 1500 m, respectively. Their maxima were phase shifted to the maximum low-level forcing by ≈8 h. Small-scale waves ( km) were continuously forced, and their flux values depended on wave attenuation by breaking and reflection in the UTLS region. Only maximum flow over the envelope of the mountain range favored the excitation of longer waves that propagated deeply into the mesosphere. Their long propagation time caused a retarded enhancement of observed mesospheric gravity wave activity about 12–15 h after their observation in the UTLS. For the UTLS, we further compared observed and simulated with fluxes of 2D quasi-steady runs. UTLS momentum fluxes seem to be reproducible by individual quasi-steady 2D runs, except for the flux enhancement during the early decelerating forcing phase.

Full access
Sonja Gisinger
,
Andreas Dörnbrack
,
Vivien Matthias
,
James D. Doyle
,
Stephen D. Eckermann
,
Benedikt Ehard
,
Lars Hoffmann
,
Bernd Kaifler
,
Christopher G. Kruse
, and
Markus Rapp

Abstract

This paper describes the results of a comprehensive analysis of the atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. How weather regimes and the atmospheric state compare to climatological conditions is reported upon and how they relate to the airborne and ground-based gravity wave observations is also explored. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June–August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s−1 above New Zealand making breaking of large-amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May–July (i.e., the period of the DEEPWAVE field phase).

Full access
David C. Fritts
,
Ronald B. Smith
,
Michael J. Taylor
,
James D. Doyle
,
Stephen D. Eckermann
,
Andreas Dörnbrack
,
Markus Rapp
,
Bifford P. Williams
,
P.-Dominique Pautet
,
Katrina Bossert
,
Neal R. Criddle
,
Carolyn A. Reynolds
,
P. Alex Reinecke
,
Michael Uddstrom
,
Michael J. Revell
,
Richard Turner
,
Bernd Kaifler
,
Johannes S. Wagner
,
Tyler Mixa
,
Christopher G. Kruse
,
Alison D. Nugent
,
Campbell D. Watson
,
Sonja Gisinger
,
Steven M. Smith
,
Ruth S. Lieberman
,
Brian Laughman
,
James J. Moore
,
William O. Brown
,
Julie A. Haggerty
,
Alison Rockwell
,
Gregory J. Stossmeister
,
Steven F. Williams
,
Gonzalo Hernandez
,
Damian J. Murphy
,
Andrew R. Klekociuk
,
Iain M. Reid
, and
Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access
Benedikt Ehard
,
Peggy Achtert
,
Andreas Dörnbrack
,
Sonja Gisinger
,
Jörg Gumbel
,
Mikhail Khaplanov
,
Markus Rapp
, and
Johannes Wagner

Abstract

The paper presents a feasible method to complement ground-based middle atmospheric Rayleigh lidar temperature observations with numerical simulations in the lower stratosphere and troposphere to study gravity waves. Validated mesoscale numerical simulations are utilized to complement the temperature below 30-km altitude. For this purpose, high-temporal-resolution output of the numerical results was interpolated on the position of the lidar in the lee of the Scandinavian mountain range. Two wintertime cases of orographically induced gravity waves are analyzed. Wave parameters are derived using a wavelet analysis of the combined dataset throughout the entire altitude range from the troposphere to the mesosphere. Although similar in the tropospheric forcings, both cases differ in vertical propagation. The combined dataset reveals stratospheric wave breaking for one case, whereas the mountain waves in the other case could propagate up to about 40-km altitude. The lidar observations reveal an interaction of the vertically propagating gravity waves with the stratopause, leading to a stratopause descent in both cases.

Full access